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Flight control programs are widely used in unmanned aerial vehicles (UAVs) to manage and maintain UAVs’
flying behaviors dynamically. These flight control programs include a PID control module that takes three
user-configurable PID parameters: Proportional (P), Integral (I), and Derivative (D). Users can also adjust these
PID parameters during flight to suit the needs of various flight tasks. However, flight control programs do
not have sufficient safety checks on the user-provided PID parameters, leading to a severe vulnerability of
UAV—input validation bug. It happens when the user misconfigures PID parameters and causes the UAV to
enter a dangerous state, such as deviation from the expected path, loss of control, or even crash.

Prior works use random testing approaches like fuzzing to identify invalid PID parameters from user input.
However, they are not effective in the three-dimensional search space of PID parameters. Meanwhile, each
dynamic execution of the UAV test is very expensive, further affecting the performance of random testing.

In this work, we address the problem of PID parameter misconfiguration by combining the Routh-Hurwitz
stability criterion with coordinate search, introducing a method called RouthSearch. Instead of identifying
misconfigured PID parameters in an ad-hoc fashion, RouthSearch principledly determines valid ranges for
three-dimensional PID parameters. We first leverage the Routh-Hurwitz Criterion to identify a theoretical
PID parameter boundary. We then refine the boundary using an efficient coordinate search. The valid range of
three-dimensional PID parameters determined by RouthSearch can filter out misconfigured PID parameters
from users during flight and further help to discover logical bugs in popular flight control programs.

We evaluated RouthSearch across eight flight modes in two popular flight control programs, PX4 and
ArduPilot. The results show that RouthSearch can determine the valid ranges of the three-dimensional PID
parameters with an accuracy of 92. 0% when compared to the ground truth. In terms of the total number of
misconfigured PID parameters, RouthSearch discovers 3,853 sets of PID misconfigurations within 48 hours,
while the STOA work PGFuzz only discovers 449 sets of PID misconfigurations, significantly outperforming
prior works by 8.58 times. Additionally, our method helps to detect three bugs in ArduPilot and PX4.
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1 Introduction
Unmanned Aerial Vehicles (UAVs) are widely used in various domains, such as agriculture [9],
meteorology [34], search and rescue operations [30], and modern warfare [55]. They rely on
flight control programs to manage the UAV’s position and attitude during flight. Flight control
programs include a PID control module with three user-configurable PID parameters: Proportional
(P), Integral (I), and Derivative (D). The PID parameters can be dynamically adjusted in flight to
meet the requirements of various UAV tasks. However, there are no sufficient safety checks on
the PID parameters before they are dynamically adjusted [14, 15]. The lack of configuration safety
checks on the PID parameters leads to a serious security problem in the UAV flight control program,
named input validation bug [27]. The input validation bug occurs when a user passes a set of
misconfigured PID parameters to the flight control program, further causing the UAV to turn into a
dangerous flight state, such as deviations from the intended flight paths, collisions, lost control, and
crashes [5, 12, 31, 44]. As flight control programs like PX4 [39] and ArduPilot [1] are widely used
in UAVs, the input validation bug is becoming a key problem in UAV safety. A protection technique
that can identify dynamically misconfigured PID parameters during flight is urgently needed.
Prior work PGFuzz [24] uses random fuzzing to detect PID parameters misconfiguration in an

ad-hoc fashion. RVFuzzer [27] and LGDFuzzer [15] identify valid ranges for each individual PID
parameter through binary search and machine learning-based prediction, respectively. However,
these approaches treat each parameter independently, overlooking their interdependencies and
thus are ineffective in identifying valid ranges when taking these relationships into account.

Identifying valid ranges for PID parameters is challenging. First, the classic stability model that
can reason the validity of PID parameters is not directly applicable in real-world scenarios. The
stability theory only reasons the mathematical model of the PID control and gives a theoretical
boundary that separates the valid and invalid PID parameters [4, 6]. In practice, the flying behavior
of UAVs can be influenced by many factors other than the underlying mathematical model, such as
the implementation of the flight control program and environmental noise. These factors cause
a drastic shift on its theoretical PID parameter boundary from the real one. Second, the search
space for PID parameters is three-dimensional and includes millions of possible parameter sets.
The runtime cost to validate each set of PID parameters is very high, taking hundreds of seconds to
run on a UAV simulator.
To address these challenges, an efficient dynamic technique is desired because it is lightweight

and resistant to unknown physical noise. We observe that despite the gap between the theoretical
PID parameter boundary and the real one being unknown, the real PID parameter boundary is
continuous and fluctuates around the theoretical one. Therefore, we start from the theoretical
boundary, then use the coordinate search [56] to quickly depict such a gap and construct an accurate
PID parameter boundary.

In this paper, we propose a principled approach called RouthSearch to efficiently determine the
valid range for the three-dimensional PID parameters. Given these valid ranges, we can detect PID
misconfigurations of UAVs on the fly. Specifically, we first leverage the Routh-Hurwitz criterion [17]
from stability theory to derive a theoretical PID parameter boundary as the starting line. Then, we
perform an efficient coordinate search to quickly refine the boundary by identifying the unknown
boundary shift. To detect whether a PID parameter configuration is valid, we implement a UAV
misbehavior validator as an oracle. We record the UAV flight log and analyze it against Metric
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Temporal Logic encoding the UAV specification. If a UAV’s flight behavior violates the MTL
specification, we classify the configuration as invalid. RouthSearch can identify valid ranges of PID
control parameters in different modes defined in mainstream flight control program. RouthSearch
also helps users avoid misconfiguring PID parameters and even discover logic bugs in implementing
a widely adopted flight control program, ArduPilot.
We evaluated RouthSearch under the eight typical flight modes of two popular flight control

programs (i.e., PX4 and ArduPilot). We measure the performance of RouthSearch by computing
the ratio of true PID parameter misconfigurations out of all predicted PID parameter misconfig-
urations. Our experimental results show that RouthSearch can identify the valid range of PID
parameters with an accuracy of 92.0%. We also evaluate RouthSearch’s ability to discover individual
PID parameter misconfigurations. The result shows that RouthSearch discovers an average of
3,853 misconfigurations within 48 hours, while the baseline tool PGFuzz has only discovered 449
misconfigurations.

Our key contributions are summarized as follows:
• We propose a principled method to identify the valid range of three-dimensional PID param-
eters. The valid range can help prevent users from misconfiguring PID parameters during
flight.

• We use an efficient coordinate search to identify individual PID parameter misconfigurations
on the UAV flight control program.

• We evaluate our method under 8 flight modes on two popular open-source flight control
programs. The evaluation result shows that RouthSearch identifies the boundary of valid
PID parameter regions with 92.0% accuracy.

• We open-source our tool to help users properly set up the PID parameters and further
foster future research in this domain. We have released our implementation in the web at
https://github.com/SciC0d3m4xOfW/RouthSearch.

The rest of the paper is organized as follows. Section 2 summarizes the background of the
UAV PID control and the Routh-Hurwitz Stability Criterion. Section 3 explains the challenges
of identifying valid ranges for PID parameters and the insights behind our method. Section 4
introduces our methodology in detail. We present our experimental results in Section 5 and discuss
the limitations of our method in Section 6. We conclude with a summary of related work in Section 7
and a conclusion in Section 8.

2 Background
2.1 PID Control Module
The PID control module regulates the UAV’s position and attitude to maintain its control and
stability. It consists of two sub-modules: 1) position sub-module to manage UAV’s position and
velocity; 2) attitude sub-module to manage UAV’s attitude and the angular velocity [29, 33]. The
PID control module has three user-configurable PID parameters, corresponding to Proportional (P),
Integral (I), and Derivative (D). The three user-configured PID parameters are used to dynamically
maintain the UAV’s stability during flight.

The error in a control system is typically defined as the difference between the desired state and
the actual state of the system. A control system is stable when its error approaches zero as time
approaches infinity. A stable UAV indicates that both the position and attitude sub-modules are
properly configured and have around zero errors [11]. While misconfigured PID parameters can
lead to large errors and an unstable UAV (e.g., oscillating or diverging from the expected path).

To illustrate the significant impact of PID parameter configurations, Figure 1 provides an example
of UAV trajectory under valid/invalid PID configurations. Figure 1a demonstrates a stable flight
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(a) Valid PID Config (b) Invalid PID Config

Fig. 1. Comparison of UAV trajectories before and after setting invalid PID configurations. After the invalid
PID parameter is set, the UAV trajectory becomes waving and unstable as shown in Figure 1b.

trajectory from the bottom-right corner to the top-left corner and back. While Figure 1b depicts an
unstable flight trajectory, characterized by unstable and waving movements and localized circular
patterns, which highlight the instability of the UAV resulting from invalid PID configurations.

2.2 Routh-Hurwitz Stability Criterion
The Routh-Hurwitz Criterion is a mathematical condition used to determine the stability of a
control system [17]. For a closed-loop PID control system, we can have the following equation:

d2𝑥 (𝑡)
d𝑡2

+ 𝑎2
d𝑥 (𝑡)
d𝑡

+ 𝑎1𝑥 (𝑡) = 𝑢 (𝑡) (1)

𝑢 (𝑡) = 𝑘𝑝𝑒 (𝑡) + 𝑘𝑖
∫ 𝑡

0
𝑒 (𝜏) 𝑑𝜏 + 𝑘𝑑

d𝑒 (𝑡)
d𝑡

(2)

where 𝑥 (𝑡) and 𝑢 (𝑡) denote the system output and the control input at time step 𝑡 respectively.
𝑒 (𝑡) represents the error at time 𝑡 . 𝑎1 and 𝑎2 are constant coefficients set by the system. 𝑘𝑝 , 𝑘𝑖 ,
and 𝑘𝑑 are the PID control’s proportional, integral, and derivative parameters. According to the
Routh-Hurwitz Criterion, when the following condition is satisfied:

𝑘𝑝 + 𝑎1 > 0 (3)

𝑘𝑑 + 𝑎2 > 0 (4)
𝑘𝑖 > 0 (5)

(𝑘𝑝 + 𝑎1) (𝑘𝑑 + 𝑎2) > 𝑘𝑖 (6)
the system is stable [17, 59]. 𝑘𝑝 , 𝑘𝑖 , and 𝑘𝑑 are manually configured by users. Due to a lack of
sufficient safety checks on these PID parameters in flight, incorrect configurations by users can lead
to severe consequences such as deviation from the expected path, collisions, loss of control, and
crashes. Note that the Routh-Hurwitz Criterion is a theoretical model of a low-level control system
and hence cannot be directly applied to UAV systems. There exists a gap between the theoretical
boundary derived by the Routh-Hurwitz Criterion and the real one. We will explain the root cause
of such boundary shifts in the following section.

3 Challenges and Insight
Routh-Hurwitz stability analysis shows that there exists a boundary that separates valid and invalid
PID parameter configurations [59]. However, we cannot directly use the Routh-Hurwitz Criterion
to derive a valid PID parameter boundary due to an unknown gap between the theoretical and real
boundaries. We first explain three challenges in determining a valid PID parameter boundary. We
then introduce our insights using an efficient coordinate search to quickly depict the unknown gap
and construct the valid PID parameter boundary.
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Challenge: Flight Mode Influence. Flight mode can greatly influence the validity of the PID
parameter. Popular flight control program defines various flight modes. Each mode represents
a unique flight behavior that imposes corresponding constraints on the PID control module. A
stable PID parameter configuration satisfying the Routh-Hurwitz Criterion may fail to meet these
additional constraints defined in flight mode, resulting in unexpected flying behaviors or failed flight
missions. Hence, there is no silver bullet PID parameter set that is valid across diverse flight modes.
A valid PID parameter range must be mode-specific. For example, a PID parameter configuration
(𝑝, 𝑖, 𝑑) satisfies the Routh-Hurwitz Criterion, and hence, the UAV configured with (𝑝, 𝑖, 𝑑) can fly
stably. However, under a certain mode, the UAV configured with (𝑝, 𝑖, 𝑑) could fail to accomplish
the required flying behaviors and lead to a crash [3].
Challenge: External Noise. External noises in sensors and environments contribute random
variance to the valid PID parameter range. PID control modules are easily affected by high-frequency
noise during a flying mission. Even a slight disturbance from sensor input or the environment can
cause a significant oscillation in the UAV [42]. Although the developers have spent a considerable
amount of time modeling and performing stability analysis of a UAV to derive a valid PID parameter
range, the UAV may still lose control or crash due to improper PID parameter configuration.
Consequently, the PID parameter range guidance in existing documentation is prone to erroneous.
As we can see from Section 5.10.2, a PID parameter configuration falling in the suggested parameter
ranges in the document can still cause an unexpected UAV malfunction.
Challenge: Huge PID Parameter Space. Given the unknown gap between the theoretical and
real boundaries, an ideal way to determine the real boundary is to use a dynamic testing approach
that can adapt to diverse flight modes and random noise. However, the PID parameter space is a
three-dimensional space, composed of a huge number of possible PID parameter configurations. For
instance, the search space of a popular UAV flight control program, ArduPilot, is [0.1, 6], [0.02, 1],
and [0.0, 1]. We set the search step size for each dimension as 0.1, 0.01, and 0.001, respectively.
There are a total of around 6 million parameter sets. Meanwhile, the runtime cost to verify the
validity of each PID parameter configuration is very high, either through a real UAV device or a
simulator.
Insight: Coordinate Search. Coordinate search is an efficient search algorithm that can perform a
coordinate-wise search to minimize a specified objective function or other search goals. Empirically,
we observe that although the unknown gap exists between the theoretical and real boundaries of
valid PID parameter configurations, the real boundary remains continuous and oscillates around
the theoretical one. Therefore, we can leverage the coordinate search algorithm to depict the
unknown gap with an efficient dynamic search. We start from the theoretical boundary derived by
the Routh-Hurwitz Criterion and refine it with the gap identified by the coordinate search. In the
end, we can efficiently construct the valid PID parameter boundary.

4 Methodology
4.1 Overview
The RouthSearch consists of two components: (1) Boundary Identification and (2) Misbehavior Val-
idation, as illustrated in Figure 2. The boundary identification module first takes in PID parameters
and their corresponding value range from the official documents of UAV flight control programs. It
then efficiently searches the PID parameter space to find a classification boundary between valid and
invalid configurations. During the search, the boundary identification module continuously queries
the misbehavior validation module to determine whether a given PID parameter configuration is
valid. In the end, it outputs the classification boundary.
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Fig. 2. RouthSearch Overview: RouthSearch includes Boundary Identification module and Misbehavior
Validation module. The Boundary Identification module takes in PID parameters along with their ranges
from the document and then explores the parameter space to find boundaries between valid and invalid
configurations. The Boundary Identification module queries the Misbehavior Validation module to validate
PID parameter configurations during the search process. Finally, it outputs valid PID parameter ranges.

4.2 Boundary Identification
In this section, we explain the efficient search algorithm that can identify the classification boundary
within a three-dimensional PID parameter space. Our approach can generalize to diverse modes of
mainstream flight control programs with external noise.
Dimension Reduction. We analyze the flight control program documentation to extract PID
parameters, their corresponding value ranges, and incremental step sizes. We define the three-
dimensional PID parameter space as (𝑘𝑝 , 𝑘𝑖 , 𝑘𝑑 ) ∈ [𝑝min, 𝑝max] × [𝑖min, 𝑖max] × [𝑑min, 𝑑max], where
𝑘𝑝 , 𝑘𝑖 , and 𝑘𝑑 denotes three PID parameter values. 𝑝min, 𝑖min, and 𝑑min denotes lower bound of
PID parameters. Similarly, 𝑝max, 𝑖max, and 𝑑max denotes the upper bound of PID parameters. We
represent the incremental step size as 𝑠𝑡𝑒𝑝𝑝 , 𝑠𝑡𝑒𝑝𝑖 , and 𝑠𝑡𝑒𝑝𝑑 . We first divide the three-dimensional
PID parameter space (𝑘𝑝 , 𝑘𝑖 , 𝑘𝑑 ) into 𝑛 two-dimensional planes (𝑘𝑖 , 𝑘𝑑 ). Each plane has a unique
𝑘𝑝 value. The goal of such dimension reduction is that we can run our efficient coordinate search
procedure as shown in Line 14-23 in Algorithm 1 at each two-dimensional plane in𝑂 (𝑛). Hence, the
total runtime overhead of our approach is𝑂 (𝑛2). While a brutal-force approach has to enumerate all
the possible cases within the three-dimensional PID parameter space to find an accurate boundary,
whose runtime overhead is 𝑂 (𝑛3).

As shown in Equation 6, the Routh-Hurwitz Criterion shows that a classification boundary
separating the stable PID parameter values and unstable PID parameter values exists. On a plane
(𝑘𝑖 , 𝑘𝑑 ) with 𝑘𝑝 = 𝑝𝑐𝑜𝑛𝑠𝑡 , we can have a linear boundary as follows:

(𝑝𝑐𝑜𝑛𝑠𝑡 + 𝑎1) (𝑘𝑑 + 𝑎2) = 𝑘𝑖 (7)

Note that 𝑎1 and 𝑎2 are unknown constants determined by the physical system and the specific
flight mode. Ideally, we only need two data points of (𝑘𝑖 , 𝑘𝑑 ) to determine the value of 𝑎1 and 𝑎2,
and further identify the linear boundary. However, real-world UAVs often have complex non-linear
boundaries due to the unknown boundary shift (see Section 3). Figure 3b shows a noisy boundary
of a control system highlighted in red. We can see that the boundary is a messy sawtooth wave
rather than a clear linear boundary, while the valid/invalid parameter region remains approximately
continuous with no disjoint regions observed empirically. To mitigate this problem, we design an
efficient algorithm based on coordinate search that is robust to the boundary shift.
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Algorithm 1: Boundary Identification Algorithm
Input: PID range: (𝑝𝑚𝑖𝑛, 𝑝𝑚𝑎𝑥 ), (𝑖𝑚𝑖𝑛, 𝑖𝑚𝑎𝑥 ), (𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥 )

Incremental step: {𝑠𝑡𝑒𝑝𝑝 , 𝑠𝑡𝑒𝑝𝑖 , 𝑠𝑡𝑒𝑝𝑑 }
Flight Mission:𝑀

Output: Classification boundary:
𝐵𝐿 = { (𝑝1, 𝑖1, 𝑑1 ), (𝑝2, 𝑖2, 𝑑2 ), · · · , (𝑝𝑛, 𝑖𝑛, 𝑑𝑛 ) }

1 /* Search dimension 𝐼 to find a valid config that is nearest to the partition line. */
2 Func Search (𝑝 , 𝑖 , 𝑑 , 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, 𝑠𝑡𝑒𝑝𝑖 ):
3 𝑖𝑠_𝑣𝑎𝑙𝑖𝑑 = 𝐹𝑎𝑙𝑠𝑒

4 while 𝑖𝑠_𝑣𝑎𝑙𝑖𝑑 == 𝐹𝑎𝑙𝑠𝑒 and 𝑖 is valid do
5 𝑖𝑠_𝑣𝑎𝑙𝑖𝑑 = Oracle(𝑝, 𝑖, 𝑑,𝑀 )
6 if 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 == 𝑑𝑜𝑤𝑛 then
7 𝑢𝑝𝑑𝑎𝑡𝑒 = −𝑠𝑡𝑒𝑝𝑖 ⊲ Search downwards
8 else
9 𝑢𝑝𝑑𝑎𝑡𝑒 = 𝑠𝑡𝑒𝑝𝑖 ⊲ Search upwards

10 𝑖 = 𝑖 +𝑢𝑝𝑑𝑎𝑡𝑒
11 𝑖𝑠𝑎𝑣𝑒 = 𝑖 − 𝑢𝑝𝑑𝑎𝑡𝑒 ⊲ Restore 𝑖 to last valid config
12 return (𝑝, 𝑖𝑠𝑎𝑣𝑒 , 𝑑 )
13 /* Dimension reduction: first fix 𝑃 , then search (𝐼 , 𝐷 ) */
14 for 𝑝 = 𝑝𝑚𝑖𝑛 to 𝑝𝑚𝑎𝑥 by 𝑠𝑡𝑒𝑝𝑝 do
15 /* Coordinate search over plane (𝐼 , 𝐷 ) */
16 𝑖 = 𝑖𝑚𝑎𝑥 ⊲ Start from upper-left corner
17 for 𝑑 = 𝑑𝑚𝑖𝑛 to 𝑑𝑚𝑎𝑥 by 𝑠𝑡𝑒𝑝𝑑 do
18 if Oracle(𝑝, 𝑖, 𝑑,𝑀 ) == 𝐹𝑎𝑙𝑠𝑒 then
19 (𝑝, 𝑖𝑠𝑎𝑣𝑒 , 𝑑 ) = Search(𝑝, 𝑖, 𝑑,𝑑𝑜𝑤𝑛, 𝑠𝑡𝑒𝑝𝑖 ) ⊲ Search dimension 𝑖 downwards
20 else
21 (𝑝, 𝑖𝑠𝑎𝑣𝑒 , 𝑑 ) = Search(𝑝, 𝑖, 𝑑,𝑢𝑝, 𝑠𝑡𝑒𝑝𝑖 ) ⊲ Search dimension 𝑖 upwards
22 𝐵𝐿.Insert(𝑝, 𝑖𝑠𝑎𝑣𝑒 , 𝑑 ) ⊲ Save boundary line
23 𝑖 = 𝑖𝑠𝑎𝑣𝑒

Coordinate Search. We describe the algorithm using coordinate search to find the boundary
on a given two-dimensional plane (𝑘𝑖 , 𝑘𝑑 ). In real-world UAVs, the boundary shape varies due to
unpredictable external noises from the physical world and flight mode influence. For example,
Figure 3a shows an approximately linear boundary as defined in Equation 7. But the boundary
in Figure 3b turns into a drastically nonlinear sawtooth wave. Unlike conventional coordinate
search aiming to find a particular data point [56], our approach identifies the entire boundary line
composed of a sequence of continuous data points.
We start from an edge point (e.g., the upper-left corner) of the two-dimensional plane (𝑘𝑖 , 𝑘𝑑 ).

Then, we fix one dimension and search for another by a small step size to generate a new (𝑘𝑖 , 𝑘𝑑 )
pair. We call the function Search() to perform this coordinate search. Note that the unknown gap
can be extremely large, such that it distorts the slope direction of the theoretical boundary. We,
therefore, adaptively search downwards and upwards in function Search() to ensure the discovery
of the real boundary. After generating a candidate of the PID parameter configuration, we send it to
the misbehavior validation module to check if it is valid. The feedback information from the oracle
is used to guide the future search direction. Once we find the first valid PID control parameter
nearest the partition line, we save it to the result list. Different from conventional coordinate
search, our algorithm continues the search after finding the first partition point. In the end, our
algorithm terminates when it reaches the boundary of the two-dimensional plane (𝑘𝑖 , 𝑘𝑑 ). Since
it’s an efficient coordinate search, the runtime overhead is 𝑂 (𝑛), where 𝑛 denotes the number of
steps along each dimension.
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Next, we explain the implementation details of our approach as shown in Algorithm 1. Lines
14-24 show the procedure of coordinate search. We iteratively search dimension 𝑘𝑑 with step
size 𝑠𝑡𝑒𝑝𝑑 . We then search dimension 𝑘𝑖 with the function Search() to find the valid PID control
parameter that is nearest to the partition line and save it into the boundary line.

(a) Linear Boundary Line (b) Noisy Boundary Line

Fig. 3. Different PID parameter boundaries of UAVs. The light blue and pink represent valid and invalid
PID configurations, respectively. We highlight the boundary line in red.

4.3 Misbehavior Validation
Our misbehavior validation module classifies a PID parameter configuration as invalid if it leads to
abnormal UAV flight behavior. Accurate validation of such misbehavior is crucial for identifying
the valid range of PID parameters. Inspired by PGFuzz [24], we used Metric Temporal Logic (MTL)
[28] formula 𝜙 to precisely describe the specified behavior of UAVs from the document. If a UAV’s
flight behavior contradicts the MTL specification, the misbehavior validation module will classify
the configuration as invalid. As Equation 8 shows, by evaluating the flight trajectory 𝜔 against
the MTL formula 𝜙 , We can verify whether the UAV’s behavior conforms to the expected norms.
Symbol |= indicates that trajectory 𝜔 conforms to MTL-formula 𝜙 .

𝑉𝑒𝑟𝑖 𝑓 (𝜔,𝜙) =
{
𝑡𝑟𝑢𝑒 if 𝜔 |= 𝜙

𝑓 𝑎𝑙𝑠𝑒 otherwise
(8)

For example, we useMTL formula□{(𝐴𝐿𝑇𝑡 < 𝑅𝑇𝐿_𝐴𝐿𝑇 )∧(𝑀𝑜𝑑𝑒𝑡 = 𝑅𝑇𝐿) → (𝐴𝐿𝑇𝑡−1 < 𝐴𝐿𝑇𝑡 )}
to formally describe the expected UAV behavior during the ascending stage under ArduPilot RTL
mode. 𝐴𝐿𝑇𝑡 and 𝐴𝐿𝑇𝑡−1 denote the altitude of the UAV at time steps 𝑡 and 𝑡 − 1, respectively.
𝑅𝑇𝐿_𝐴𝐿𝑇 denotes a threshold defined in the RTL mode. This MTL formula states that when the
UAV operates in RTLmode, and its altitude is below 𝑅𝑇𝐿_𝐴𝐿𝑇 , it should strictly increase its altitude.
Any flight trajectory under ArduPilot RTL mode violating this MTL formula would be considered
as UAV misbehaviors.

The misbehavior validation module comprises two main components: UAV simulation and offline
oracle. The UAV simulation operates with a set of PID control parameters and predefined flight
commands. During the simulation, we record the UAV’s flight log. Next, we leverage an offline
oracle to examine this log and check whether any misbehavior is observed.
We use the offline oracle because it can validate the entire flight trajectory and offer better

validation accuracy than the online oracle. For flight modes that exhibit a long trajectory, the
online oracle cannot accurately validate them. The reason is that the online oracle relies on a fixed-
size sliding window, which cannot completely capture the UAV’s flight trajectory. For example,
ArduPilot’s Circle mode requires the oracle to verify whether the flight trajectory exhibits a
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repeating circle. The trajectory is too long to fit into a fixed-size sliding window. Consequently, the
online oracle often yields wrong results when given a partial UAV’s flight trajectory. In contrast,
the offline oracle can verify the MTL against the entire trajectory, which results in better accuracy.

5 Evaluation
In this section, we evaluate the effectiveness of RouthSearch by answering the following research
questions:
RQ1: Can RouthSearch identify the accurate range of valid PID parameter configurations
given a flight mode?

RQ1 aims to evaluate the accuracy of the identified parameter range. In this context, we seek to
determine whether there are any misconfigurations that our method fails to identify, as well as to
verify if the PID configurations within the parameter region we’ve designated as invalid are indeed
invalid.
RQ2: How does RouthSearch perform in spotting individual invalid PID parameter con-
figurations?
RQ2 focuses on evaluating the efficacy of our method in discovering PID misconfigurations.

As misconfigurations provide developers with valuable information about flight control program
vulnerabilities, we want to evaluate our method’s ability to detect misconfigurations.
RQ3: Has our strategy for mitigating the influence of noise improved the accuracy of
identified boundaries?
RQ3 evaluates the effectiveness of the downward search strategy implemented within our

coordinate search methodology. To mitigate the influence of noise, we incorporated this strategy
into our search algorithm. Our objective is to quantify the extent to which this search strategy
enhances the overall performance of our approach.
RQ4: How does the step size of the RouthSearch search algorithm affect the accuracy of
boundary identification?

The purpose of RQ4 is to examine the relationship between step size and boundary identification
accuracy in the RouthSearch algorithm. The step size parameter is hypothesized to have a dual
effect: smaller values may enhance accuracy by allowing for finer-grained boundary delineation,
while potentially increasing computational time and reducing efficiency. This study systematically
examines how accurately boundaries are identified with different step sizes to find the best balance
between precision and computational efficiency in the RouthSearch algorithm.
RQ5: Does the sampling-based evaluation influence the RouthSearch’s performance?

RQ5 aims to assess the impact of sampling-based evaluation on the performance of RouthSearch.
In our experiment, we sample the parameter space with a step size to evaluate the performance
of RouthSearch due to the limited computational resources. This study investigates whether this
sampling-based evaluation may affect the evaluation by comparing it against the exhaustive
evaluation setting.
RQ6: Is offline oracle more accurate than online oracle in UAV misbehavior validation?
RQ6 evaluates the accuracy of an offline oracle over an online oracle in the validation of UAV

misbehavior. The motivation for the offline oracle is that it improves the accuracy of validation by
recording the flight states of all time steps, particularly in some flight modes (such as AP:Circle)
where an accurate validation requires a long flight history. However, an online oracle with a sliding
window cannot capture the entire flight trajectory and lead to an accurate validation. We compare
the accuracy of the online and offline oracle.
RQ7: Can other search algorithms (e.g., hill climbing and genetic algorithm) achieve
comparable performance to coordinate search for boundary identification and misconfig-
uration detection?
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RQ7 investigates the application of other search algorithms (e.g., hill climbing and genetic
algorithms) in RouthSearch. In our evaluation, we found coordinate search performed empirically
the best among all three search algorithms in RouthSearch.

5.1 Experimental Settings
We conducted four studies to address our research questions (RQs). Each study is designed to
provide insights into specific aspects of our method’s performance and effectiveness. We conducted
an experiment on an openEuler release 20.03 LTS machine with 80 CPU cores (16 processors),
251GB RAM, and 870GB disk space.
Subjects.We studied two popular flight control programs: ArduPilot (ArduCopter V4.4.1)[1] and
PX4 (V1.15.0 a1cce7e) [39]. We evaluated our method in the SITL Simulator [2] of ArduPilot and
the jMAVSim [38] of PX4 with default settings. Our evaluation evaluated eight typical flight modes,
encompassing both simple and complex flight tasks. From ArduPilot, we selected RTL [48], Zigzag
[49], Circle [47], and Brake [46]. From PX4, we chose Orbit [52], Return [53], Land [51], and
Hold [50].
Experiment 0: Obtain Ground Truth. To evaluate the accuracy of these identified boundaries, we
obtain the ground truth benchmark of the invalid PID parameter configurations. The ground truth
was obtained through a systematic exploration of the PID parameter space available in the document
for each flight mode. Each PID parameter configuration was tested within its corresponding flight
mode. Our misbehavior validation module then classified each configuration as valid or invalid. This
process, requiring approximately 7000 CPU hours, yielded a labeled benchmark of PID parameter
configurations for each flight mode.
Experiment 1: Boundary Identification. This experiment addresses RQ1. We utilize RouthSearch
to identify the boundaries of invalid PID parameter regions. To evaluate the accuracy of these
identified boundaries, we compare the invalid PID parameter configurations within these regions
against the ground truth benchmark established in experiment 0. We choose this approach over
comparing our method with other leading methods such as RVFuzzer and LGDFuzzer. We do not
select RVFuzzer as a baseline because it is not open-sourced. Meanwhile, RVFuzzer’s problem
setting is not compatible with ours as it only outputs the value range for a single PID parameter,
while our problem requires identifying a multi-dimensional PID parameter range. We do not
select LGDFuzzer as our baseline, because in the context of a multi-dimensional parameter space,
LGDFuzzer outputs the Cartesian product of these single-dimensional ranges. This results in a
cuboid-like invalid parameter region, which does not match our polyhedron-like invalid parameter
region in our problem definition. As a result, they are not suitable as our baselines.
Experiment 2: Misconfiguration Discovery. This experiment addresses RQ2 by evaluating the
effectiveness of our method in discovering PID parameter misconfigurations. We compare our
method with PGFuzz, a state-of-the-art misconfiguration detection method. Both methods were
run for 48 hours, and their performance was assessed based on the number of misconfigurations
discovered. Our method utilizes identified boundaries of invalid PID parameter regions. Each
parameter within these regions is tested under eight flight modes, and our misbehavior validation
module classifies it as either a misconfiguration or a valid configuration. PGFuzz uses a random
search with simple guidance to find misconfigurations. For a fair comparison, we align PGFuzz’s
search space with ours, excluding parameters irrelevant to PID control modules. We also replace
PGFuzz’s online oracle with our offline misbehavior validator. We ran the PGFuzz experiment three
times to ensure robust results, given the variability of the random method.
Experiment 3: Design Choice. This experiment addresses RQ3. We evaluate the impact of the
downward search strategy on identifying valid PID parameter regions. We developed a variant
method that omits the downward search during coordinate search and applied both the original and
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variant methods to eight flight modes. We then compared the boundaries identified by each method.
This comparison assesses the downward search strategy’s contribution to boundary accuracy.
Experiment 4: Step Size Analysis. This experiment addresses RQ4, focusing on step size impact.
We modified the original incremental step size by factors of 10x and 100x and then applied our
search algorithm with these modified step sizes. We compare the resulting Miss Rate and Hit Rate to
those obtained using the original step size. The comparison helps quantify the step size’s influence
on search accuracy and efficiency.
Experiment 5: Sample-based Evaluation Influence. This experiment addresses RQ5. We ex-
haustively evaluated RouthSearchon all possible configurations of ArduPilot RTL mode. We then
compared the miss rate and hit rate obtained from that exhaustive experiment setting with the
rates from the sampling-based experiment setting.
Experiment 6: Justification for Offline Oracle Design. This experiment addresses RQ6. We
compared the accuracy of the offline oracle and online oracle to justify our selection of the offline
oracle. We execute flight tasks across 8 flight modes under various PID configurations, and use
online and offline oracles, respectively, to validate their behaviors. We calculated the accuracy
of the different oracles by comparing the results of different oracle settings with human-verified
results.
Experiment 7: Investigating Other Search Algorithms. This experiment addresses RQ7. We
replaced the Coordinate Search component of RouthSearch with Hill Climbing (HC) and Genetic
Algorithm (GA), creating RouthSearch-HC and RouthSearch-GA variants. These variants were
applied to identify boundaries and detect misconfigurations with the same experiment settings
of the original RouthSearch. We compare the miss rate, the hit rate, and the number of detected
misconfigurations of two variants and the original RouthSearch.

5.2 Evaluation Metrics
We use Miss Rate and Hit Rate to evaluate our method. Let GT represent the set of all miscon-
figurations in the ground truth, and RS denotes the set of all misconfigurations generated by the
RouthSearch method proposed in this study. The metrics employed in this paper are as follows:
MR. The Miss Rate (MR) quantifies the extent to which the boundaries identified by the proposed

method fail to capture misconfigurations. A lower miss rate indicates a higher accuracy in
identifying boundaries. It is defined as:

𝑀𝑅 =
|𝐺𝑇 − 𝑅𝑆 |

|𝐺𝑇 |
HR. The Hit Rate (HR) measures the accuracy of the misconfigurations generated according to the

boundaries identified by the proposed method. A higher hit rate signifies a more efficient
generation of misconfigurations during the invalid configuration generation phase. It is
defined as:

𝐻𝑅 =
|𝑅𝑆 ∩𝐺𝑇 |

|𝑅𝑆 |

5.3 Results: Experiment 1
Table 1 shows the boundary identification performance of RouthSearch. Column “Total" shows the
total ground truth misconfigurations. “Identified" is the count of misconfigurations identified by
RouthSearch. “Accurate" is the count of correctly identified misconfigurations. “MR" and “HR" are
the miss rate and hit rate, respectively.
The result shown in Table 1 demonstrates our method’s high effectiveness in boundary identi-

fication. The average hit rate (HR) of misconfigurations generated by our method is 92.0%. This
means that, on average, most of the PID parameter misconfigurations identified by RouthSearch are
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Table 1. Boundary identification accuracy of RouthSearch. This table shows the accuracy of the misconfigu-
rations identified by the boundaries for different flight modes in ArduPilot (AP) and PX4 systems, measured
in terms of total misconfigurations, identified misconfigurations, accurate detections, miss rate (MR), and hit
rate (HR). Higher HR and lower MR indicate better detection capability.

Mode Total Identified Accurate MR HR

AP:Zigzag 28,162 21,107 19,367 31.2% 91.8%
AP:Brake 36,584 33,357 32,902 10.1% 98.6%
AP:RTL 27,267 26,624 26,545 2.6% 99.7%
AP:Circle 20,477 23,016 17,022 16.9% 74.0%
PX4:Orbit 8,979 8,103 6,630 26.2% 81.8%
PX4:Return 9,592 8,604 8,429 12.1% 98.0%
PX4:Land 9,610 9,123 8,885 7.5% 97.4%
PX4:Hold 4,930 4,394 4,165 15.5% 94.8%
Average 18,200 16,791 15,493 15.3% 92.0%

correct. The miss rate (MR), representing misconfigurations not detected by our method, averages
15.3%. In other words, only a few PID parameter misconfigurations are not detected by our method.
The high average Hit rate and the low average Miss Rate demonstrate the high accuracy of our
boundary identification method.

Notably, in ArduPilot’s RTL mode, RouthSearch achieves exceptional performance with a 99.7%
hit rate and only a 2.6% miss rate, significantly surpassing the overall average performance of 92.0%
hit rate and 15.3% miss rate across all flight modes. This indicates that our method is particularly
effective in identifying PID parameter misconfigurations in this specific flight mode, with RTLmode
showing the most precise detection capabilities among all tested scenarios.

The number of PID parameter misconfigurations varies across flight modes, suggesting the bound-
ary shift of invalid PID parameter regions under different flight modes. This variation highlights
the importance of considering flight modes when identifying PID parameter misconfigurations. A
significant boundary shift is observed between different flight modes within ArduPilot: ArduPilot’s
Brake mode exhibits the highest number of invalid PID parameter configurations (36,584), while
the Circle mode shows the lowest (20,477). This difference suggests that the Brake mode may be
more sensitive to PID parameter misconfigurations compared to the Circle mode.

Result 1: RouthSearch achieves an average 92.0% hit rate and 15.3% miss rate across various
flight modes. This result indicates the effectiveness of our method in accurately identifying PID
parameter misconfigurations.

5.3.1 Root Cause Analysis of Worst Case. The performance of our method in the worst-case
scenario is primarily influenced by two factors: the settling time of the PID control system [35] and
the misbehavior validator’s sensitivity.
Long Settling Time. ArduPilot’s Zigzag mode exhibits an elevated MR (31.2%), attributed to long
settling times. The Routh-Hurwitz criteria guarantee stability as time approaches infinity but do
not account for settling time, defined as the time for a system to stabilize [35]. Small P values can
lead to prolonged settling times, causing the system to slowly reach or even fail to reach the target
[32, 57]. Consequently, our proposed method may overlook misconfigurations caused by these long
settling times.
Over-Sensitive Misbehavior Validator. Our method, when applied to PX4’s Orbit mode and
ArduPilot’s Circle mode, exhibits a low hit rate (HR) of 81.8% and 74.0%. This discrepancy arises
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from the misbehavior validator’s sensitivity to the inherent deviations present in Orbit mode tra-
jectories. While Orbitmode ideally maintains a circular flight path, factors like sensor inaccuracies
introduce minor deviations that, although practically insignificant, impact the detector’s ability to
differentiate between valid and invalid trajectories. Consequently, valid PID parameter configu-
rations are misclassified as invalid, as illustrated in Figure 4, leading to an inaccurate boundary
identified by our algorithm.

Fig. 4. False negative reported by the misbehavior validator under PX4 Orbit mode. The pink marks false
positive misconfigurations caused by the detector’s sensitivity to deviation.

5.4 Results: Experiment 2
Table 2 compares misconfiguration detection by RouthSearch and PGFuzz. Column “RouthSearch”
is the number of RouthSearch’s detections, and “𝑃𝐺𝐹𝑢𝑧𝑧{1,2,3}” are PGFuzz detections over three
runs.

Table 2. Comparison of number of misconfigurations discovered by RouthSearchand PGFuzz under three runs
(𝑃𝐺𝐹𝑢𝑧𝑧{1,2,3} ) across flight modes in ArduPilot (AP) and PX4. Higher numbers indicate better performance.

Mode RouthSearch PGFuzz1 PGFuzz2 PGFuzz3

AP:Zigzag 3,390 557 617 518
AP:Brake 11,820 406 289 262
AP:RTL 4,969 1,319 1,325 1,286
AP:Circle 3,533 93 78 76
PX4:Orbit 1,909 290 236 207
PX4:Return 1,092 299 278 256
PX4:Land 2,037 635 495 576
PX4:Hold 2,070 305 193 171

Average 3,853 488 439 419

As shown in Table 2, regarding misconfiguration generation, RouthSearch demonstrates superior
effectiveness compared to the PGFuzz method. Our method discovered an average of 3,853 PID
parameter misconfigurations, whereas PGFuzz detected a modest 449 misconfigurations (averaged
across three experimental iterations). In the most successful instance, our method discovered 11,820
PID parameter misconfigurations in ArduPilot’s Brake mode. In contrast, PGFuzz discovered an
average of only 319 PID parameter misconfigurations, based on results from three iterations (406,
289, and 262 misconfigurations, respectively).

Result 2: RouthSearch outperforms PGFuzz in PID parameter misconfiguration discovery, dis-
covering 8.58 times more misconfigurations (3,853 vs 449 on average).
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5.5 Results: Experiment 3
Table 3 shows the misconfiguration detection comparison between RouthSearch and RouthSearch-
DSOff (Downward Search Off). Column “Total” represents the number of misconfigurations in
ground truth, Column “RouthSearch-DSOff” and Column “RouthSearch” show the number of
detected misconfigurations, Miss Rate, and Hit Rate for each.

Table 3. The total number of misconfigurations and accuracy discovered by RouthSearch and variant
RouthSearch-DSOff (Downward Search Off) for eight flight modes. Higher numbers, higher HR, and lower
MR indicate better detection capability.

Mode Total RouthSearch-DSOff RouthSearch
Number MR HR Number MR HR

AP:Zigzag 28,162 531 98.1% 97.3% 19,367 31.2% 91.8%
AP:Brake 36,584 32,515 11.1% 98.2% 32,902 10.1% 98.6%
AP:RTL 27,267 26,531 2.7% 99.7% 26,545 2.6% 99.7%
AP:Circle 20,477 15,678 23.4% 93.1% 17,022 16.9% 74.0%
PX4:Orbit 8,979 3,779 57.9% 99.9% 6,630 26.2% 81.8%
PX4:Return 9,592 5,340 44.3% 99.7% 8,429 12.1% 98.0%
PX4:Land 9,610 6,737 29.9% 98.7% 8,885 7.5% 97.4%
PX4:Hold 4,930 3,175 35.6% 99.5% 4,165 15.5% 94.8%
Average 18,200 11,786 37.9% 98.3% 15,493 15.3% 92.0%

As shown in Table 3, RouthSearch achieves significantly better results than RouthSearch-DSOff
in terms of the number of identified misconfigurations and the miss rate. On average, RouthSearch
identifies 15,493 misconfigurations and a 15.3% miss rate. RouthSearch-DSOff identifies 11,786
misconfigurations and 37.9% miss rate. That means the downward search strategy can significantly
decrease the miss rate (from 37.9% to 15.3%). RouthSearch-DSOff’s hit rate slightly improved because
the RouthSearch-DSOff doesn’t explore the noise area, where invalid and valid configurations
are mixed. In other words, the downward search strategy is effective in identifying configuration
boundaries.

Result 3: The downward search strategy is effective in identifying configuration boundaries,
decreasing the miss rate from 37.9% to 15.3%.

5.6 Results: Experiment 4

Table 4. The influence of step size in algorithm 1 on the misconfiguration detection and boundary identifica-
tion accuracy of RouthSearch. The step size ranges from 1x (finest) to 100x (coarsest). Results are measured
in terms of total misconfigurations, identified misconfigurations, accurate detections, miss rate (MR), and hit
rate (HR). Higher HR and lower MR indicate better performance.

Step Size Total Identified Accurate MR HR

1x 374,578 330,727 325,300 13.2% 98.4%
10x 36,584 33,357 32,902 10.1% 98.6%
100x 4,012 3,812 3,673 8.4% 96.4%

Table 4 examines how step size affects detection performance. The “Total” column represents the
overall misconfiguration ground truth. “Identified” indicates the count of misconfigurations Routh-
Search invalidates. “Accurate” reflects the number of correctly detected invalid misconfigurations.
“MR” and “HR” present the Miss Rate and Hit Rate evaluation metrics.
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The results reveal that the 10x scale step size achieves the highest hit rate (98.6%), while the
100x scale step size yields the lowest (96.4%). However, the difference between these extremes is
merely 2.2%. Regarding miss rate, the 100x scale step size performs best (8.4%), with the 1x scale
step size showing the poorest performance (13.2%). The difference here is 4.8%. These relatively
small variations indicate that step size has a limited impact on the method’s overall performance.

Considering both accuracy and computational efficiency, we empirically determined that a 10x
scale step size provided the optimal trade-off for our experiments. This choice balances the high hit
rate (98.6%) with a reasonably low miss rate (10.1%), while significantly reducing the configurations
to be tested compared to the 1x scale.

Result 4: The maximum differences in the MR and HR across various step sizes were 4.8% and
2.2% respectively. These small variations indicate that our method’s performance is relatively
insensitive to step size, with the 10x scale step size offering the most balanced selection.

5.7 Results: Experiment 5
Table 5 presents a comparison between computing HR and MR using exhaustive and sampling eval-
uation. “Exhaustive” (evaluation over all possible configurations) and “Sampling-based” (evaluation
over sampled configurations). Column “CPU hours” means total runtime.

Table 5. Exhaustive evaluation vs Sampling-based evaluation; Exhaustive means evaluation over all possible
configurations; Sampling-based means evaluation over sampled configurations. CPU hours mean total
runtime.

Mode Experimental Setting MR HR CPU hours

AP: RTL Exhaustive 6.7% 98.9% 9,067
Sampling-based 2.6% 99.7% 907

As Table 5 shows, we found that the difference in MR and HR is marginal, which indicates that
the sampling-based evaluation is reliable. The variance in MR (6.7% vs 2.6%) and HR (98.9% vs
99.7%) is minor. Meanwhile, our sampling-based evaluation requires only one-tenth total runtime
compared with exhaustive evaluation.

Result 5: Our sampling-based evaluation is reliable with minimal influence on the MR and HR,
while also requiring only one-tenth of the total runtime compared with exhaustive evaluation.

5.8 Results: Experiment 6
Table 6 compares agreement rate with expert classification (%) of “Online" and “Offline" Oracles.
Higher percentages indicate better performance.

Table 6. Online/Offline method Detection Accuracy Comparison (evaluated by agreement rate with human-
verified results).

Mode Online Offline Mode Online Offline

AP:Brake 96.5% 99.4% PX4:Hold 100% 100%
AP:Circle 72.7% 96.5% PX4:Land 100% 100%
AP:RTL 99.7% 99.7% PX4:Return 100% 100%

AP:Zigzag 97.1% 97.1% PX4:Orbit 28.5% 97.3%
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Table 6 shows that the offline oracle generally outperforms the online oracle for UAVmisbehavior
validation, due to its use of the entire trajectory context. For the long-term PX4:Orbit mode, the
offline oracle is significantly better, reaching 97.3% agreement compared to online’s 28.5% (68.8%
higher). This gap in PX4:Orbit, a long-duration mode, highlights the online oracle’s limited window
size, failing to capture the long-term context needed for complex misbehavior validation. The offline
oracle overcomes this by using the entire trajectory. For short-term flight mode, the offline oracle’s
accuracy is also on par with the online oracles’ accuracy. For instance, both online and offline
oracles achieve high agreement (96.5%-100%) in modes like AP:Brake and PX4:Hold/Land/Return.
In conclusion, Table 6 empirically justifies offline oracle for RQ6, as it better detects UAVmisbehavior,
especially those requiring the entire trajectory context other than limited slide windows.

Result 6: The offline oracle outperforms the online oracle for UAV misbehavior validation,
especially for long-term patterns (PX4:Orbit 97.3% vs 28.5% agreement rate, 68.8% higher). For
short-term patterns, both methods show similar high performance (96.5–100%).

5.9 Results: Experiment 7
Table 7 compares the performance of RouthSearch variants: Coordinate Search (CS), Hill Climbing
(HC), and Genetic Algorithm (GA). The columns show Miss Rate (MR), Hit Rate (HR), and the
number of misconfigurations identified (’number’) for each method.

Table 7. Comparison performance between RouthSearch-CS(Routh Search with Coordinate Search),
RouthSearch-HC(Routh Search with Hill Climbing) and RouthSearch-GA(Routh Search with Genetic Algo-
rithm). Higher numbers, higher HR, and lower MR indicate better detection capability.

Mode
RouthSearch-CS RouthSearch-HC RouthSearch-GA

MR HR number MR HR number MR HR number

AP:Zigzag 31.2% 91.8% 3390 98.3% 25.1% 481 93.0% 20.2% 1928
AP:Brake 10.1% 98.6% 11,820 93.5% 49.3% 2373 89.9% 35.5% 3688
AP:RTL 2.6% 99.7% 4,969 95.0% 37.9% 1379 88.4% 30.3% 3204
AP:Circle 16.9% 74.0% 3,533 95.4% 45.6% 934 90.2% 19.1% 1874
PX4:Orbit 26.2% 81.8% 1,909 98.0% 22.8% 173 96.4% 42.2% 319
PX4:Return 12.1% 98.0% 1,092 98.3% 37.6% 162 96.4% 40.3% 345
PX4:Land 7.5% 97.4% 2,037 96.3% 40.8% 358 95.8% 39.3% 401
PX4:Hold 15.5% 94.8% 2,070 96.8% 21.9% 158 94.5% 29.8% 270
Average 13.0% 92.0% 3853 96.5% 35.1% 752 93.1% 32.1% 1504

Table 7 demonstrates that Coordinate Search(CS) is better than Hill Climbing (HC) and Genetic
Algorithms (GA) in RouthSearch. CS only requires binary feedback to decide on whether to search
upward or downward, which aligns perfectly with the binary feedback, achieving near-perfect
precision (e.g., 2.6% MR and 99.7% HR in AP:RTL) and 2.5 times higher misconfiguration counts.
In contrast, HC exhibits excessively high miss rates (e.g., 98.3% MR in AP:Zigzag) and low hit
rates (e.g., 21.9% HR in PX4:Hold). This limitation arises because hill climbing lacks quantitative
feedback, degenerating into a local random search that produces narrow, inaccurate boundaries.
GA also exhibits high miss rates and low hit rates. Although GA is slightly better than HC (for
example, 89. 9% vs. 93. 5% in AP: Brake) through a greater exploration, but remains trapped in
undirected randomness due to missing fitness-guided refinement, resulting in persistently low HR
(19.1–42.2%) and suboptimal misconfiguration detection (max: 3,688 vs. 11,820 for RouthSearch-CS).
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Result 7:Coordinate search significantly surpasses hill climbing and genetic algorithms, achieving
superior HR and MR and detecting 2.5-5 times more misconfigurations on average. This result
validates the selection of coordinate search due to its effective use of binary feedback.

5.10 Case Study
By utilizing our method in the ArduPilot and PX4 flight control programs, We obtained many failed
cases and spotted several bugs. Here are some bug cases we have found.

5.10.1 Bug 1. As the ArduPilot document said, the Brake mode stops the vehicle as soon as
possible. Once invoked, this mode does not accept any input from the pilot. We have found that PID
misconfigurations could cause the Brake mode to fail to stop the vehicle and move around. After
misconfiguring the PID parameters of the ArduPilot position control sub-module into (0.1, 0.8, 0.8),
we commanded the UAV to fly for a certain distance and then issued a command to enter Brakemode.
The UAV attempted to stop quickly and regain its balance. However, due to the misconfiguration,
the more the flight control program attempts to utilize the PID control module to quickly bring the
UAV to a stop, the more the unstable PID control module fails to achieve the objective. This results
in the UAV continuously rotating, as shown in Figure 5.

To make it even worse, due to the refusal of Brake mode to accept commands sent by the sticks
of the transmitter. Thus, the user can’t stop the UAV manually while the UAV is in a perilous state.
As Listing 1 shows, ArduPilot is trying to stop the UAV by setting a zero velocity as the target to
the PID control module. While the UAV is unstable because of the misconfiguration, the velocity is
always greater than zero, which results in a rotating UAV that never stops. This issue represents
a logical flaw in the system, where there is inadequate error handling for scenarios in which the
speed fails to reach zero.

Switch to Brake Mode Here

Fig. 5. UAV under ArduPilot Brake mode fails to stop at the destination marked in red and gets stuck in
circles endlessly due to a logic bug in the flight control program.

1 void brake_mode () {
2 while(true) {
3 pos_pid_control.set_target_velocity (0);
4 /* Logical Bug: Missed error handling.*/
5 sleep (0.1);
6 }
7 }

Listing 1. The logical bug in Brake mode of ArduPilot. The ArduPilot tries to stop the UAV by setting a
zero velocity as the target to the PID control module, but the unstable UAV fails to achieve that due to the
misconfiguration. That results in the UAV continuously rotating, because the flight control program forgets
to handle the error case when the function call set_target_velocity(0) fails.
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Fig. 6. Flight trajectory (marked in yellow) of a misconfigured UAV (marked in green) under RTL mode.
The UAV, stuck in a circle around the home location and failed to land, was caused by misconfigured PID
parameters.

1 // Check if the UAV reaches the destination
2 bool reached_dst () {
3 dist = compute_dist(curr_loc , dst);
4 if(dist < radius)
5 return true;
6 return false;
7 }
8
9 // Attempt to land after the UAV reaches the destination
10 void switch_to_land () {
11 state_complete = reached_dst ();
12 if(state_complete)
13 perform_land ();
14 /* Logical Bug: Missed error handling. */
15 }

Listing 2. Logical bug in ArduPilot RTLmode. ArduPilot checks the UAV’s approach to the descent location by
calculating the distance to it. Misconfigured PID parameters cause the UAV to circle continuously, preventing
it from getting close enough to reduce the distance under threshold radius. In that case, state_complete is
always false. The flight control program forgets to handle the error case. Therefore, the landing action is not
invoked, and the UAV fails to land at the home location.

5.10.2 Bug 2. RTL (Return-To-Launch) is an ArduPilot flight mode that commands the UAV to
fly towards its home location and land after hovering above for a while. A logic bug occurs in RTL
mode when users set the PID parameters with a value that would cause the UAV to misbehave.
Specifically, users set the PID parameters of the position control sub-module as (0.1, 0.8, 0.4), all of
which fall within the value range of the PID control parameter in the official document of ArduPilot.
However, these PID parameters accidentally lead to an unstable control state of the UAV under
RTL mode. As a result, the UAV kept circling around the home location without reaching a suitable
descending spot. Figure 6 shows the flight trajectory (marked in yellow) of the UAV (green). Given
that the goal of RTL mode is to perform a landing at the home location, the misconfigured UAV
under RTL mode is trapped in a circle and fails to accomplish the landing task.
Listing 2 shows the logical bug in ArduPilot. In Line 2, the function reached_dst() checks if

the UAV reaches a suitable descent location by measuring the distance between the UAV’s current
position and the descent location. The distance is shown in purple in Figure 6. Due to misconfigured
PID control parameters, the UAV is stuck in a circle and fails to reduce the distance under the
threshold radius. In Line 12, the state_complete is always false. The landing action in Line 13 is,
therefore, not invoked. Ultimately, the UAV hovers in a circle and fails to land at the home location.
It’s worth noting that we have already brought this issue to the attention of the developers, who
have acknowledged the bug.
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5.10.3 Bug 3. As the PX4 document said, the Hold mode causes the vehicle to stop and maintain
its current position and altitude [50]. As Figure 7 shows, we have found that PID misconfigurations
could cause the Holdmode to fail to hold the UAV’s position and attitude and lead the UAV to crash
to the ground. After commanding the UAV to take off to a certain altitude, we misconfigured the
PID parameters of the PX4 attitude control submodule into (0.01, 0.1, 0.0005) and then issued a
command to enter Hold mode. As Figure 7 shows, once we have misconfigured PID parameters,
the UAV becomes unstable and quickly crashes to the ground due to the loss of balance.

t

Fig. 7. UAV trajectory of PX4 under Hold mode. UAV crashes after time t when a user misconfigures a PID
parameter.

5.10.4 Discussion. In three 48-hour experiment runs, RouthSearch exclusively discovered Bugs
1 and 2, which PGFuzz failed to discover. While PGFuzz occasionally found Bug 3 in only two of
the three runs and required 8.86 hours for detection in those instances, RouthSearch consistently
identified the same bug in just 1.5 minutes. Furthermore, RouthSearchdiscovered 2, 002 PID mis-
configurations, compared to the 7 found by PGFuzz. The random and isolated parameter mutation
of PGFuzz hindered the detection of multidimensional trigger conditions (required by Bugs 1 and
2). In contrast, RouthSearch’s principled PID parameter analysis and theoretical guidance enabled
systematic misconfiguration detection. Bug 3, requiring a single-dimensional trigger (a low value
of 𝑝), can be occasionally found by PGFuzz, but RouthSearch can detect it more consistently and
efficiently.

6 Limitations and Discussion
Handling Misconfigurations Caused by Long Settling Time. The settling time problem oc-
curs when both the 𝑝 value and 𝑖 value are simultaneously small, the PID control module fails
to achieve the desired output, and causes the system under control to move too slowly to reach
the target. That results in PID misconfigurations that our method may overlook. A candidate fix
is to examine the configurations where both the 𝑝 value and 𝑖 value are simultaneously small in
pre-processing.
Misbehavior Validator’s Sensitivity. The detector’s over-sensitivity affects boundary identifi-
cation accuracy. It sometimes misclassifies valid PID configurations as invalid. This can lead to
inaccurate boundary identification in corner cases. A potential solution is to use multiple misbehav-
ior validators and perform majority voting. This approach could mitigate the impact of deviations
on the detector’s output.
Trade-off between Accuracy and Efficiency. A large search step size in boundary identification
improves RouthSearch’s efficiency but may reduce boundary accuracy. Conversely, a small step
size increases accuracy at the expense of time. Selecting an appropriate step size that balances the
trade-off between these requirements should be considered in practice.
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7 Related Works
PID Parameters Optimization. In the field of control theory, researchers have long focused on
strategies for selecting optimal PID control parameters. Classical approaches, including Ziegler-
Nichols [32], Åström-Hägglund [57], and Cohen-Coon [22], are widely employed to determine
suitable PID control parameters within specified ranges for various control systems. Building upon
these classical methods, more sophisticated techniques have emerged to address diverse control
challenges. Computational intelligence approaches, such as genetic algorithms [18, 20] and particle
swarm optimization [16, 23], offer robust tuning strategies for complex systems where traditional
methods may fall short. Data-driven tuning approaches [21, 43] generate tuning strategies through
learning processes, combining system models and operational data to optimize control parameters.
Recent advancements [13, 19, 37] focus on robust and adaptive tuning strategies to manage system
uncertainties and time-varying dynamics, addressing limitations of static tuning methods.

Based on these theories, software developers have implemented numerous tools for fine-tuning
PID control parameters across various applications, such as the AutoTune mode [45] in ArduPilot.
Nevertheless, these tools may pose challenges for normal users lacking substantial expertise in
tuning control parameters [40].
UAV Parameter Misconfiguration Detection. The misconfiguration of parameters in UAVs
frequently results in abnormal flight behavior, jeopardizing flight safety. In recent years, ensuring
the flight safety of unmanned aerial vehicles (UAVs) has become a focal point of considerable
attention from researchers [10, 36, 54].

Fuzz testing has been adapted for UAVs to uncover bugs arising from misconfigured parameters.
Unlike traditional software fuzzing that detects crashes or memory corruption, bugs in UAV systems
typically manifest in distinct error types [26, 41]. Recent UAV fuzzing methods address this using
policies based on physical behavior to guide testing [8, 25]. PGFuzz [24], for example, implements
temporal logic policies to guide the search for erroneous UAV parameters. These policy-driven
fuzzing methods excel in uncovering bugs that conventional methods may overlook. Concurrently,
learning-guided fuzzing techniques, used in testing Cyber-Physical Systems [7, 58], are also used to
identify UAV parameter bugs. LGDFuzzer [15], for instance, employs a learned model that effectively
guides the search.

8 Conclusion
This paper proposes RouthSearch, a novel method leveraging Routh-Hurwitz stability and co-
ordinate search to accurately determine the valid 3D ranges for critical PID parameters in the
UAV flight control program. RouthSearch identifies boundaries between valid and invalid PID
parameter configurations, helping prevent users from misconfiguring PID parameters during flight.
Evaluated on ArduPilot and PX4 across 8 flight modes, it achieved 92.0% accuracy, detected 3,850
misconfigurations per 48 hours (significantly outperforming prior work), and uncovered 3 bugs.

9 Data Availability
We provide our tool RouthSearch, an implementation of the boundary identification module and
misbehavior validation module in web at https://github.com/SciC0d3m4xOfW/RouthSearch.
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