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Abstract—Mobile apps are ubiquitous, and have become an
indispensable part of our daily life. It is crucial to ensure the
correctness, security and performance of these apps through
automated GUI modeling. UI Transition Graph (UTG) is an
important way of app abstract and modeling. While there have
been considerable research efforts on constructing UTG through
static or dynamic analysis, obtaining a relatively accurate and
complete UTG is challenging. To this end, we present an approach
and tool RLDroid that synergistically combines static analysis,
dynamic exploration and reinforcement learning techniques to
construct UTGs for Android apps. Specifically, RLDroid first
extracts a seed UTG through static analysis, and uses this UTG
with a depth-first strategy to guide the dynamic exploration.
Then, RLDroid provides a Q-learning-based strategy initialized
with the generated partial UTG to enhance dynamic exploration
and outputs the final UTG. Our experiments on 29 Android apps
show that RLDroid identified a total of 871 nodes (i.e., UI pages)
and 2726 edges (i.e., transitions) without any false positives,
which significantly outperforms the state-of-the-art GUI model-
ing techniques. Our two exploration strategies, the seed-UTG-
guided exploration and the Q-learning-enhanced exploration,
make positive contributions to improving the completeness of
UTG. Furthermore, the UTGs generated by RLDroid are highly
useful for automated GUI testing, resulting in a 60% increase in
code coverage and the discovery of 52 additional crashes.

Index Terms—Android apps, Program analysis, GUI testing,
Reinforcement learning

I. INTRODUCTION

Mobile applications (apps) are ubiquitous, and have become
an indispensable part of our daily life [1], [2]. It is crucial
to ensure the correctness, security and performance of these
apps through automated GUI modeling, thereby improving
their quality and reliability. UI Transition Graph (UTG) is an
important way of GUI modeling. In UTG, nodes represent UI
pages (e.g., Activity, Fragment, and Menu) and edges represent
transitions between UI pages. UTG can be used for functional
testing to detect runtime errors [3], [4], for security analysis
to identify malicious behavior [5], [6], and for competitive
analysis to storyboard app features [7], [8].

While there have been considerable research efforts on
constructing UTG [8]–[18] through static or dynamic analysis,
obtaining a relatively accurate and complete UTG is challeng-
ing. On one hand, due to the inaccuracy of reference analysis
and data flow analysis, static analysis generates a large number
of false positive transitions [19], and due to a wide range
of implementations and code styles, it also misses several
transitions [7], [18], [19]. On the other hand, although dynamic
analysis can accurately extract transitions, its coverage is far
from satisfactory as some states are too deep to explore or
require complex inputs [20]. Additionally, dynamic analysis
generally takes a long time to obtain the UTG. Some work
also employs machine learning [19], [21] to predict transi-
tions between UI pages that cannot be identified by static
or dynamic analysis, aiming to enhance the completeness
of UTG construction. However, machine learning demands
a substantial amount of data, and there can be considerable
differences in UI structure among different apps. This leads to
the generation of transitions with a higher incidence of false
positives and false negatives by such methods.

Reinforcement learning [22]–[24] is a branch of machine
learning that does not rely on predefined models or human-
made strategies. It focuses on learning optimal strategies
through the interaction between agents and the environment
to maximize cumulative rewards, and is particularly suitable
for solving sequential decision problems. Recently, there have
been several studies [24]–[32] utilizing reinforcement learning
to dynamically generate UTGs in order to enhance the com-
pleteness of UTG construction. However, these methods use
random strategies for initialization (i.e., randomly initializing
the Q values in Q-table or the parameters of neural net-
works), which results in slow convergence of the reinforcement
learning algorithms and subsequently makes it difficult to
adequately explore new UI pages. In addition, for modeling
states in reinforcement learning, some methods exhibit overly
coarse granularity (e.g., using all widget types on a UI page
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to represent a state), which may result in misjudgment of new
UI pages. Conversely, other methods exhibit excessively fine
granularity (e.g., using the screenshot of a UI page to represent
a state), which can generate a substantial amount of redundant
states and lead to the state explosion problem. Therefore, it is
challenging to find an effective method to build an accurate
and complete UTG.

To this end, we propose RLDroid that synergistically com-
bines static analysis, dynamic exploration and reinforcement
learning techniques to construct a UTG for an app. Given an
app, RLDroid first extracts a seed UTG through static analysis,
and uses this UTG to guide the dynamic exploration. In order
to obtain a relatively accurate seed UTG, RLDroid does not
use traditional pointer analysis techniques, as they generate a
large number of false positive transitions [11], [13]. Instead,
RLDroid directly analyzes the entry points of event callback
methods for widgets and systematically searches the app’s
global method call graph for API method calls that trigger
UI page transitions. These API method calls are provided
by Android documentation [33]–[36]. Then, RLDroid parses
the parameters in the transition API and combines data flow
analysis to obtain the target UI page. For dynamic exploration,
RLDroid uses a depth-first strategy to execute as many events
as possible to cover more UI pages.

To enhance the completeness of UTG, RLDroid employs Q-
learning to augment the dynamic exploration process. Rather
than initializing Q-learning with a random strategy, RLDroid
utilizes a partially constructed UTG generated from prior static
analysis and dynamic exploration for initialization, which can
reduce the convergence time of the Q-learning algorithm.
Regarding the states in Q-learning, RLDroid models them
using a combination of the Activity name, layout tree, and
image of the UI page. This method avoids overly coarse
state representations while mitigating the problems of state
redundancy and explosion caused by excessively fine state
representations. Additionally, RLDroid designs a reward func-
tion to guide the construction of UTG, which considers the
execution frequency of the current event, whether the next state
is new, and the execution frequency of all events in the next
state. The reward function encourages the Q-learning agent
to explore more new UI pages, thereby generating additional
transitions. As a result, RLDroid is expected to effectively
construct a more accurate and complete UTG.

We evaluate RLDroid on 29 Android apps and compare
it with 4 state-of-the-art GUI modeling tools to validate its
effectiveness. The results demonstrate that RLDroid surpasses
other existing tools in terms of the number of UI pages (871
in total, 158-532 improvement) and transitions (2726 in total,
688-1867 improvement). For the constructed transition edges,
RLDroid does not produce any false positives. In addition, we
conduct an ablation study to evaluate the contribution of the
seed-UTG-guided exploration and the Q-learning-enhanced
exploration. The result indicates that the seed-UTG-guided
exploration and the Q-learning-enhanced exploration improve
the number of identified UI pages by 141% and 101%,
respectively, and increase the number of generated transitions

Agent

Environment

action 𝑎𝑡reward 𝑟𝑡

State 𝑠𝑡current moment

State 𝑠𝑡+1next moment

Fig. 1. Markov Decision Process.

by 200% and 149%, respectively. To evaluate the usefulness
of RLDroid, we apply it in the automated GUI testing. The
result shows that with the guidance of RLDroid, Monkey [37],
a widely used GUI testing tool in both academia and industry,
achieves a 60% improvement in code coverage and detects 52
additional crashes.

Overall, our contributions can be summarized as follows:
• We propose RLDroid, which is a novel approach syner-

gistically combining static analysis, dynamic exploration
and reinforcement learning to construct UTGs for An-
droid apps.

• We perform an extensive experiment on 29 Android
apps, which demonstrates the effectiveness of RLDroid
in UTG construction compared with the state-of-the-art
GUI modeling tools. Moreover, experiments show that
our reinforcement learning strategy plays a key role in
augmenting the completeness of UTG.

• We have implemented RLDroid as an automated tool and
make it and the data set used in the experiment are avail-
able at https://github.com/RLDroidModeling/RLDroid

II. BACKGROUND
A. Android GUI Modeling

Android Graphical User Interface (GUI) modeling is a
crucial aspect of app analysis and security assessments. It
involves representing the visual and interactive components
of an Android app in a structured format [1], [17]. These
components, such as activities, fragments, views, and layout
containers, form the backbone of any Android application. The
GUI modeling process aims to capture the hierarchy and rela-
tionships between these elements, allowing for comprehensive
analysis of app behaviors and user interactions [7], [8], [15].

In recent years, Android GUI modeling has evolved to
accommodate the dynamic nature of app development. Tradi-
tional modeling approaches primarily focused on activities and
views, but modern Android apps leverage advanced UI features
like fragments and navigation components to enhance user
experience. To address these complexities, advanced modeling
techniques, including the concept of UI Transition Graphs
(UTGs), have emerged. A UTG represents the runtime user
interactions within an app as a directed graph, capturing the
transitions between different UI pages. This model provides
a comprehensive understanding of app flow and behavior,
enabling more precise analysis and detection of non-compliant
or malicious behaviors [5], [38].
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B. Q-learning

Q-learning [22] is a popular reinforcement learning algo-
rithm that is model-free and off-policy. It aims to learn the
optimal policy that maximizes the expected cumulative reward
through interaction with the environment. Q-learning operates
by maintaining a Q-table, which maps state-action pairs to
their estimated Q-values, representing the expected utility of
taking an action in a particular state.

Reinforcement learning problems can be represented as a
standard Markov Decision Process (MDP), as shown in Figure
1. At each step, the agent observes the current state st and
selects an action at based on the Q-values. The environment
then transitions to a new state st+1 and provides an immediate
reward rt. The Q-values are updated according to the Bellman
equation, which captures the relationship between the current
Q-value and the optimal future Q-value:

Q(st, at)← Q(st, at) + α [rt + γmaxa′ Q(st+1, a
′)−Q(st, at)] (1)

where st and at are the state and action at time t respectively,
rt is the immediate reward received after taking action at in
state st, α is the learning rate from 0 to 1, γ is the discount
factor that determines the importance of future rewards which
usually between 0.8 and 0.99 [27], [29], and a′ represents
all possible actions in the next state st+1. Over time, as the
agent continues to interact with the environment and update
its Q-values, the Q-table converges to represent the optimal
policy [39]. Therefore, if the agent selects the action with
the highest Q-value in each state, the goal of maximizing
cumulative reward can be achieved.

III. MOTIVATING EXAMPLE

AnkiDroid1 is a highly popular flashcard app with 8,400
stars on Github and over 10 million downloads on Google
Play. RLDroid constructs a UTG for this app, where 57 nodes
are used to represent the UI pages and 383 edges are used to
represent the transitions among them. Due to space limitation,
Figure 2 shows part of UTG of the app, which includes 6 UI
pages (p1-p6) and 6 transitions (solid black edges). The label
on each edge indicates the event or widget that triggers this
transition. For instance, after clicking the menu button on the
top right of page p1, the menu will open, and the page will
navigate from p1 to p2. When the Back button on the device
is pressed, the page will return to p1.

There are difficulties in building a relatively accurate and
complete UTG. For AnkiDroid, we first leverage the state-
of-the-art static analysis tool, GoalExplorer [15], to construct
its UTG, resulting in 23 nodes and 492 transition edges.
Unfortunately, among these 492 edges, 419 are false positives.
The reason for so many false positives lies in the deficiency of
reference analysis. GoalExplorer employs overly approximate
data flow analysis to calculate potential transitions between
two UI pages. In Figure 2, the dashed red line represents
a false positive transition generated by GoalExplorer. This
transition is triggered by clicking on the list item “Advanced

1AnkiDroid. https://play.google.com/store/apps/details?id=com.ichi2.anki

click

back

click

click

click

click

click

p1p2

p3 p6

p4 p5

Fig. 2. Partial UTG of AnkiDroid.

Optimization and experimental features”, navigating from page
p4 to p5, while the correct transition should be triggered by
clicking on the list item “AnkiDroid General setting”. False
positive transitions not only mislead the navigation between
their source and target pages but also affect subsequent transi-
tions starting from the target page. Additionally, GoalExplorer
only identifies 23 UI pages (i.e., 23 nodes) because it is unable
to recognize dynamically rendered UI pages. To reduce the
false positive transitions, some tools employ dynamic or hybrid
analysis to construct UTG, such as Promal [19], SceneDroid
[18], and Q-testing [27]. We use these three tools to construct
the UTG for AnkiDroid, but none of them are able to recognize
the transition between p4 and p5 in Figure2. On the other
hand, Q-testing, Promal, and SceneDroid can only identify
13, 19, and 27 UI pages respectively, along with 87, 104, and
235 transitions, due to the weakness of low page coverage in
dynamic analysis. Additionally, none of these three tools can
effectively identify duplicate UI pages, which results in a large
number of redundant nodes in the constructed UTG.

To enhance the accuracy and completeness of UTG while
minimizing redundant nodes, RLDroid constructs it through
the following steps:

• Seed UTG Extraction. RLDroid utilizes the app’s global
transition graph and APIs related to page transitions in
the Android documentation (e.g., Activity transitions and
opening dialogs) to construct a relatively accurate seed
UTG.

• Seed-UTG-Guided Exploration. RLDroid employs the
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seed UTG to guide dynamic exploration and combines a
depth-first strategy to execute as many events as possible.
Through the dynamic exploration guided by the seed
UTG, a partial UTG is established.

• Q-learning-Enhanced Exploration. RLDroid initializes
the Q-learning algorithm with the partial UTG, thereby
perpetuating the dynamic exploration process. Each UI
page is represented by its Activity name, layout tree, and
image, serving as the foundation for state modeling in
Q-learning and facilitating the identification of identical
pages. Furthermore, RLDroid introduces an exploration
reward function aimed at incentivizing the discovery of
a greater number of UI pages.

IV. APPROACH

Figure 3 describes the workflow of RLDroid. It comprises
two steps: (1) static analysis and (2) dynamic exploration.
Given an APK, RLDroid first uses static analysis to extract
UI pages of the app, identify transitions between these pages,
and construct a seed UTG. Guided by this seed UTG, RLDroid
subsequently employs a dynamic exploration method that
integrates depth-first search and Q-learning-based strategies to
thoroughly navigate the app. This process results in the output
of a comprehensive UTG, accompanied by detailed analytical
findings, such as the screenshot and layout tree corresponding
to each individual UI page.

A UTG is defined as G = (U,E,Σ), where:
• Node u ∈ U indicates a UI page, and we consider 4

categories of UI pages that users can interact with as a
node in a UTG: activities, fragments, menus, and dialogs.
Activities and fragments are typically rendered in the
form of full-screen pages. Menus (e.g., Options Menu
and Context Menu) and dialogs are short-lived windows
that often require the user to take actions.

• Edge e ∈ E is an edge between nodes representing a
page transition.

• Label σ ∈ Σ is a label on an edge representing a event
that triggers the page transition. σ is a tuple < w, type >
where w is the widget that triggers σ and type is the type
of this event σ, such as click and long click.

A. Static Analysis

Static analysis aims to analyze the UI pages, widgets and
inter-page transitions within an app, thereby facilitating the
construction of a seed UTG. This process encompasses two
pivotal steps: UI extraction and transition identification.

UI Extraction. Based on our definition of UTG, 4 types
of UI pages are considered: Activity, Fragment, Menu
and Dialog. We extract all activities from the Android-
Manifest.xml file and search for the corresponding activ-
ity classes by their names. For the identification of frag-
ments, we filter out classes that directly or indirectly ex-
tend android.app.Fragment from the app code. Sim-
ilarly, we extract dialogs by searching for classes that in-
herit from android.app.Dialog. Menus are hosted in
an activity and are initialized by callback methods such as

TABLE I
API METHODS RELATED TO ACTIVITY, FRAGMENT, MENU, AND DIALOG

TRANSITION

Transition Type Class Method
Activity android.app.Activity startActivity*

Fragment *.FragmentTransation add
attach

Menu

android.app.Activity onCreateOptionsMenu*.Fragment
android.app.Activity onCreateContextMenu*.Fragment
android.app.Activity registerForContextMenu*.Fragment

Dialog android.app.Dialog show

onCreateOptionsMenu and onCreateContextMenu.
Therefore, we check whether there are such methods in the
code of each activity in order to extract the menu-type page.

Apart from extracting UI pages, we also retrieve all the
widgets within each page. For the widgets in activities, frag-
ments or dialogs, they can be defined within the corresponding
XML layout file or dynamically added to the UI page through
tailored code statements. To obtain these widgets and their
event handlers, we firstly identify events associated with
widgets registered in the layout file, for example, by retrieving
configurations like android:onClick="onClick". This
allows us to obtain the widget’s resource ID, type, and text, as
well as locate the callback method for the event. Secondly, we
recognize events that are specified using listener registration
methods, such as setOnClickListener, by scanning the
app code. Furthermore, we apply data-flow analysis to the
method’s caller to pinpoint its declaration statement. This
could be a findViewById invocation if the widget is
specified in the layout, or a new instantiation method if the
widget is created dynamically. In such cases, we obtain the
widget’s resource id (if provided) and retrieve its type and
text either from the layout file or from the arguments of the
method invocations.

Menus are typically structured as hierarchical arrangements
of menu items, with each item considered a widget equipped
with a corresponding event handler. The interface of a menu
can be defined through both static and dynamic means. Static
definition involves specifying the components of a menu
within a resource file and subsequently loading this resource
into the program. Conversely, dynamic definition employs
menu-specific methods, such as add and addSubMenu, to
construct the menu’s architecture. In contrast to other types
of widgets, deep-level menu items in a multi-level menu are
only visible when their parent menus are selected. Therefore,
when identifying hierarchical menu items, we also record the
display path for each submenu item.

Transition Identification. The transitions between different
UI pages are generally identified by some pre-specified API
methods invoked in the callback of a widget. These methods
are related to UI transitions and Table I shows the commonly
used API methods related to Activity, Fragment, Menu,
and Dialog transition. Due to limited space, we use asterisks
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Fig. 3. The workflow of RLDroid.

to omit some prefix and suffix letters. We search within
the callback methods of the widgets to see if there are any
invocations of such API methods. Additionally, considering
that such transition-related APIs may not be directly called
within the callback methods (i.e., they may be called through
one or more layers of other custom methods), we leverage the
app’s method call graph to facilitate our search and matching
process. Specifically, we initially acquire the app’s comprehen-
sive method call graph using FlowDroid [40]. Subsequently,
within this graph, we systematically search for paths originat-
ing from callback methods (e.g., onClick) and terminating
at transition-related API methods (e.g., startActivity).
Upon successful identification of such paths, we employ data
flow analysis to ascertain the calling objects and parameters of
the transition API, thereby extracting the target page. We then
establish a transition edge predicated on the source page, target
page, the corresponding widget, and event information. Once
all UI pages have been analyzed, we integrate all identified
transitions to construct the app’s seed UTG. Please note that
the constructed seed UTG is incomplete due to limitations of
static analysis. We only use it to guide dynamic exploration
to generate a more complete UTG.

B. Dynamic Exploration

The goal of dynamic exploration is to explore more UI
pages and uncover additional transitions by using the guidance
of the seed UTG and enhancements from Q-learning, thereby
generating a more complete UTG. We employ the Markov
Decision Process (MDP) to formulate the dynamic exploration.
Therefore, in this section, we first introduce the definitions of
each element in the MDP quadruplet < S,A, P,R >, and then
describe the process of dynamic exploration in detail.

State Space: S. Many studies on automated testing have
proposed methods for representing a state of a UI page [9],
[14], [20], [41], [42]. These methods encompass utilizing the
layout, the image, and the widget information (e.g., widget
types) of a UI page to represent a state. However, widget
information provides a too coarse representation of states, as
many different pages may share the same widget information.
Although page layouts or page images can represent states
in a fine-grained manner, minor changes in the content of
a page can lead to changes in page layout and page image,
resulting in state redundancy and explosion problems. To this
end, we represent a state by integrating the layout with the

image of the page, achieving a fine-grained representation
while significantly mitigating the problems of state redundancy
and explosion. More specifically, for a given state st within S,
it is characterized as a triplet < at, lt, imt >. Here, at denotes
the name of the activity associated with st. The lt component
signifies the structural arrangement of st, manifested as a
widget tree. Within this hierarchical structure, leaf nodes
embody non-container widgets (e.g., buttons), whereas non-
leaf nodes represent container widgets (e.g., linear layouts). In
the process of state modeling, certain widget attributes, such
as text, are deliberately omitted. This omission serves dual
purposes: simplifying the layout and mitigating the generation
of excessive redundant states. Lastly, imt represents the visual
snapshot of st at time t, captured as an image of the page. For
two states si and sj , their similarity sim(si, sj) is defined as
equation 2.

sim(si, sj) =

{
αsim(li, lj) + βsim(imi, imj) ai = aj

0 ai ̸= aj
(2)

When the respective activity names associated with si and
sj differ, the similarity between them is 0. Conversely, the sim-
ilarity is computed as the weighted average of their layout sim-
ilarity and image similarity. In equation 2, sim(li, lj) denotes
the layout similarity between si and sj , while sim(imi, imj)
represents the image similarity. The weighting coefficients are
designated as α and β (α + β = 1), respectively. In our
practice, we use the normalized tree edit distance [43] to
calculate the layout similarity and use the image matching
algorithm in OpenCV [44] to calculate the image similarity.
With regard to the weighting coefficients, we set the values of
α and β to 0.7 and 0.3, respectively.

Action Space: A. User interaction events within the app
are formulated as actions within the MDP action space. For
simplicity, no distinction is made between events and actions.
Events in the action space A originate from two parts: one is
the events obtained through static analysis in the seed UTG,
and the other is the events inferred from the properties of
widgets on the page (e.g., clickable, scrollable). Since each
event is associated with a specific state, we use a state-event
pair (s, a) to represent an executable event, and the value of
the event (i.e., Q-value) is stored in the Q-table.

State Transition Function: P . The implementation logic of
the app can be regarded as the transition function P , which
determines the subsequent state after executing action at.
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Reward Function: R. The role of the reward function is to
generate a numerical value to guide the agent in conducting
valuable explorations and triggering more new transitions. It
is defined by equation 3 and consists of three parts. Where,

• |st, at| denotes the execution frequency of at in st,
and a lower execution frequency implies a higher value
attributed to the action at.

• |st+1| represents the number of unexecuted events in
st+1. The more unexecuted events, the higher the value of
action at. It should be noted that for a certain event at+1

in st+1, if it triggers the transition to an activity or frag-
ment, its execution flag is set to “executed” immediately
after its execution. However, if it triggers the display of a
menu or dialog, at+1 is only marked as “executed” after
all events in the menu or dialog have been fully executed.

• isNew(st+1) denotes whether st+1 is a new state. If it
is, isNew(st+1) takes the value of 1; otherwise, it is
0. We record the visited states during the exploration
and calculate the similarity between st+1 and these
states according to equation 2. If the similarity between
st+1 and all previous states is below a given threshold
(which we set as 0.99 based on experience), then st+1 is
considered a new state.

R =
1

|st, at|
+ |st+1|+ isNew(st+1) (3)

Dynamic Exploration Process. Algorithm 1 depicts the
detailed dynamic exploration process, which includes two
phases: exploration guided by seed UTG (lines 3-19) and
exploration enhanced by Q-learning (lines 21-29). The explo-
ration guided by seed UTG adopts a depth-first strategy. For
each interaction, RLDroid first extracts the current state st
(line 4). If st is a new one, RLDroid adds it to the state set U
(line 5). Then, RLDroid searches for the corresponding page
node in the seed UTG based on the activity name and layout
of st, and selects an unexecuted event σ from it (line 6). If σ
does not exist in st or all events in the seed UTG have been
executed, RLDroid selects an unexecuted event from st in a
top-down search manner. If all events in st have been executed
or no events can be selected, it executes a back event to return
to the previous state (lines 7-14). After executing σ, RLDroid
calculates the reward for this event according to equation 3
(if it is a back event, the reward is 0), updates the Q-table
according to equation 1, and updates the edges and events in
the UTG (lines 15-18).

chooseAction(s) =

argmax
a

Q(s, a) 1− ϵ

random action ϵ
(4)

The exploration process enhanced by Q-learning is similar
to that guided by the seed UTG. For each interaction, RLDroid
first obtains the current state (line 22), updates the state set
(line 23), selects and executes an action (lines 24-25), then
calculates the reward for the action (line 26), and finally
updates the Q-table as well as the edges and events in the
UTG (lines 27-28). The only difference lies in the action

Algorithm 1: Dynamic Exploration
Input: Seed UTG: G, timeout
Output: UTG

1 U,E,Σ, Q← {} ;
2 launch app ;
3 repeat
4 st ← getCurrentState();
5 U ← U ∪ {st} ;
6 σ ← selectEvent(G, st) ;
7 if ¬σ.exist() then
8 if allEventsExecuted(st) then
9 σ ← back ;

10 end
11 else
12 σ ← selectUnexecutedEvent(st) ;
13 end
14 end
15 st+1 ← execute(σ) ;
16 rt ← getReward(σ, st+1) ;
17 Q(st, σ)← Q(st, σ) + α [rt + γmaxσ′ Q(st+1, σ

′)−Q(st, σ)] ;
18 e←< st, st+1, σ >, E ← E ∪ {e}, Σ← Σ ∪ {σ} ;
19 until timeout;
20 restart app ;
21 repeat
22 st ← getCurrentState();
23 U ← U ∪ {st} ;
24 at ← chooseAction(st) ;
25 st+1 ← execute(at) ;
26 rt ← getReward(at, st+1) ;
27 Q(st, at)← Q(st, at) + α [rt + γmaxa′ Q(st+1, a

′)−Q(st, at)] ;
28 e←< st, st+1, at >, E ← E ∪ {e}, Σ← Σ ∪ {at} ;
29 until timeout;
30 UTG←< U,E,Σ > ;

selection strategy employed by RLDroid, which uses the ϵ-
greedy strategy defined in equation 4: it selects the action with
the highest Q-value in st with a probability of 1−ϵ and selects
a random action with a probability of ϵ. Based on previous
experience [27], [31], we set ϵ to 0.2. This strategy guides
RLDroid to explore in the direction of increasing rewards
while encouraging it to explore unknown states. It should be
noted that if an app crash is encountered during exploration,
RLDroid will restart the app and continue the exploration.

V. IMPLEMENTATION

RLDroid is implemented as a fully automated UTG model-
ing framework, which reuses or extends a set of off-the-shelf
tools: Soot [45], FlowDroid [40], UI Automator [46], Android
Debug Bridge (ADB) [47], and Logcat [48]. Soot is used to
analyze the intermediate code of an app and extract its XML
resource files. FlowDroid is extended to build the call graph of
an app and perform data flow analysis. UI Automator is used to
dump GUI hierarchy and screenshot of UI pages and perform
dynamic exploration. ADB is used to send events and obtain
the activity name of the current UI page. During exploration,
we use Logcat to monitor and record runtime exceptions.

VI. EVALUATION

In our experimental evaluation, we seek to answer the
following three research questions:
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• RQ1: How effective is RLDroid in constructing UTGs,
compared to existing GUI modeling tools?

• RQ2: How much do the seed-UTG-guided exploration
and the Q-learning-enhanced exploration contribute to
UTG construction?

• RQ3: How useful is RLDroid in automated GUI testing
in Android apps?

A. Evaluation Setup

Subject Apps. We evaluated RLDroid on a data set contain-
ing 29 apps which were collected by the following three steps.
Firstly, we collected 78 non-duplicated apps from two Android
testing benchmarks, ANDROTEST [3] and THEMIS [49],
which have been used in several studies [20], [24], [27], [42].
Secondly, we excluded 29 apps that have not been maintained
in the last two years in order to receive timely feedback from
app developers, as well as 23 apps with fewer than 2 activities.
Finally, we added 3 apps downloaded from Google Play, which
were used in the early research investigations of our project
(marked by “#” in Table II), to the data set. Similar to Table
I, we use asterisks to omit some suffix letters of app names
due to space limitations.

Execution Environment. Our experiments ran on a 64-bit
Ubuntu physical machine with 2.50GHz Intel(R) Core(TM) i9-
12900H CPU and 32GB RAM, and used an Android emulator
to perform dynamic exploration. The emulator was configured
with 2GB RAM and Android Nougat operating system (SDK
7.1, API level 25).

Evaluation Setup of RQ1. To evaluate the effectiveness of
RLDroid in constructing UTG, we compare it with 4 represen-
tative GUI modeling tools: GoalExplorer [15], Q-testing [27],
PROMAL [19], and SceneDroid [18]. GoalExplorer is the
most recent technique that utilizes static analysis to construct
the UTG of an app. Q-testing dynamically constructs the
UTG using reinforcement learning, and it designs a curiosity-
driven exploration strategy to select events that are most
likely to navigate to new pages. PROMAL and SceneDroid
are two recent techniques that combine static and dynamic
analysis to construct a UTG. PROMAL uses static analysis
to construct a static UTG, then employs dynamic analysis to
verify the transitions within it, and leverages machine learning
to predict feasible transitions. SceneDroid, on the other hand,
uses static analysis to extract ICC messages and construct an
Activity Transition Graph (ATG). It then combines dynamic
analysis with indirect activity launches to generate a more
comprehensive UTG.

For each transition in the UTG, we classify it into two
categories:

• True Positive (TP): After executing the event on the
transition, the app should navigate from the source page
of the transition to the target page.

• False Positive (FP): After executing the event on the
transition, the app should not navigate from the source
page of the transition to the target page.

We manually check whether a transition is a false positive.
First, we navigate the app to the source page based on

information such as the page’s activity name and screenshot.
Then, we identify the widget based on its information (e.g.,
widget id and widget image) and execute the corresponding
event. Finally, we check whether the app jumps to the target
page. If it jumps to the target page, we consider the transition
as a true positive; otherwise, it is a false positive.

We allocated 1 hour for each evaluated tool in one run, and
repeated 5 independent runs for each tool. Regarding RLDroid,
we allocated 30 minutes for the seed-UTG-guided exploration
and 30 minutes for the Q-learning-enhanced exploration.

Evaluation Setup of RQ2. To evaluate the contribution
of different strategies in UTG construction, we implemented
two versions of RLDroid (RLDroidα and RLDroidβ) as the
baselines and conducted an ablation study.

• RLDroidα: This baseline comparison aims to evaluate
the contribution of the exploration guided by seed UTG.
Specifically, RLDroidα removes the seed-UTG-guided
exploration in Algorithm 1 (lines 3-19), and only uses
the Q-learning-enhanced strategy to interact with the app.
For each interaction, RLDroidα determines the optimal
event on the UI page by utilizing the ϵ-greedy strategy
as outlined in equation 4.

• RLDroidβ : This baseline comparison aims to evaluate the
contribution of the exploration enhanced by Q-learning.
Specifically, RLDroidβ removes the Q-learning-enhanced
exploration in Algorithm 1 (lines 21-29) and solely em-
ploys the seed-UTG-guided strategy to interact with the
app. For each interaction, RLDroidβ adopts a depth-first
strategy guided by the seed UTG (lines 6-14 of Algorithm
1) to select the optimal event on the UI page.

We allocated 1 hour for RLDroidα and RLDroidβ . If
RLDroid is capable of constructing a more complete UTG
than RLDroidα (or RLDroidβ), we can conclude that the
exploration guided by a seed UTG (or enhanced by Q-
learning) plays an effective role in the construction of UTG.

Evaluation Setup of RQ3. In order to further evaluate
the usefulness of RLDroid, we applied it to guide automated
GUI testing. We used Monkey [37], which is a widely-used
lightweight Android test input generator in both academia and
industry [3], [4], as an example to modify it for experiments.
Specifically, for each app, we tested it using the Monkey
with and without the UTG generated by RLDroid for 1 hour
respectively. We evaluate the usefulness of RLDroid based on
the coverage and the number of detected crashes. If Monkey
with the guidance of RLDroid achieves higher coverage and
discovers more crashes compared to Monkey itself, we can
conclude that RLDroid is indeed useful for automated GUI
testing.

B. Experimental Results

RQ1: Effectiveness. Table II shows the results of RLDroid
and 4 state-of-the-art GUI modeling tools (GoalExplorer,
PROMAL, Q-testing, and SceneDroid) on 29 Android apps.
Column “#N” indicates the total number of nodes in the
UTG built by each tool. Column “#E” indicates the total
number of edges identified by each tool. Column “TP” and
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TABLE II
RESULTS OF RLDROID (RD), GOALEXPLORER (GE), PROMAL (PM), Q-TESTING (QT), SCENEDROID (SD), RLDROIDα (RDα), AND RLDROIDβ

(RDβ ).

App RD GE PM QT SD RDα RDβ

#N #E TP FP SA(s) #N #E TP FP #N #E TP FP #N #E #N #E #N #E #N #E
ActivityDiary 20 73 73 0 12 9 64 11 53 11 58 49 9 9 28 17 55 11 32 14 40
AmazeFile* 25 47 47 0 6 8 52 13 39 15 49 31 18 12 16 23 41 13 19 15 24
AnkiDroid 57 383 383 0 49 23 492 73 419 19 122 104 18 13 87 27 235 21 99 25 107
Collect 36 51 51 0 10 19 82 21 61 28 53 37 16 20 29 31 43 22 32 26 39
FirefoxLite 15 26 26 0 4 6 30 5 25 10 27 18 9 5 4 15 23 8 11 8 11
Geohash* 19 36 36 0 5 8 17 12 5 13 30 28 2 5 9 16 29 7 13 8 16
Material* 13 27 27 0 11 5 15 7 8 7 20 16 4 6 8 11 19 6 9 7 10
OmniNotes 28 55 55 0 16 10 63 17 46 20 61 48 13 7 10 24 50 8 10 12 16
Osmeditor 75 286 286 0 39 28 342 85 257 53 196 168 28 22 51 63 201 20 47 25 56
Phonograph 18 31 31 0 7 7 40 11 29 16 27 27 0 6 8 18 29 6 7 9 11
ScarletNotes 31 78 78 0 9 16 105 34 71 25 70 62 8 14 30 30 75 18 39 18 42
#BeeCount 14 22 22 0 4 4 11 4 7 9 26 19 7 5 5 12 20 5 6 8 9
#Glucosio 29 53 53 0 13 10 67 19 48 23 47 44 3 9 15 24 47 12 23 12 25
#Gnucash 33 77 77 0 35 24 96 31 65 26 38 34 4 18 26 30 69 16 25 16 27
WorldClock 13 23 23 0 6 5 20 7 13 8 28 19 9 4 5 10 21 6 9 6 11
AntennaPod 57 193 193 0 40 26 254 58 196 41 148 127 21 23 54 46 172 20 50 25 58
36C3* 12 18 18 0 30 4 11 4 7 9 21 13 8 3 5 12 16 4 6 6 7
AnyMemo 40 78 78 0 34 23 69 45 24 32 75 66 9 18 37 35 72 21 40 24 43
Aphoto* 37 79 79 0 23 21 73 48 25 30 74 64 10 20 46 33 70 17 39 24 48
ArxivMobile 13 20 20 0 8 5 23 7 16 10 26 17 9 6 9 11 15 7 9 8 11
BookCata* 43 218 218 0 37 17 311 89 222 29 206 188 18 21 102 36 179 20 98 25 124
Dalvik* 13 18 18 0 5 3 16 4 12 10 22 14 8 3 3 12 16 4 4 6 7
Feeder 11 17 17 0 8 5 26 7 19 7 23 15 8 4 5 9 15 5 5 5 6
K9 48 136 136 0 47 19 286 82 204 37 158 120 38 24 89 40 125 20 87 22 93
Keepass* 9 14 14 0 16 5 24 7 17 8 17 12 5 3 5 9 13 6 8 7 9
MyExpenses 81 416 416 0 58 27 591 106 485 63 242 199 43 30 121 60 187 26 120 30 133
RingDroid 9 14 14 0 8 4 19 4 15 7 15 12 3 5 6 7 12 5 5 6 6
RunnerUp 52 198 198 0 36 17 192 38 154 34 170 149 21 15 33 41 172 18 42 27 85
Wikipedia 20 39 39 0 52 6 45 10 35 13 32 24 8 9 16 11 17 9 16 10 21
Sum/Avg 871 2726 2726 0 22 364 3436 859 2577 613 2081 1724 357 339 862 713 2038 361 910 434 1095

“FP” categorizes whether the edges are true positives or false
positives. It is worth noting that Table II does not show TP and
FP for Q-testing and SceneDroid, as both tools dynamically
construct UTGs, where all edges are true positives. Therefore,
there is no necessity for TP and FP columns in this context.
Column “SA(s)” indicates the time spent by RLDroid to
construct the seed UTG through static analysis.

RLDroid generated a total of 871 nodes and 2726 edges
in the 29 Android apps, with no false positives among these
edges. In comparison with the state-of-the-art techniques,
RLDroid identifies the largest number of nodes and edges,
followed by SceneDroid (713 nodes and 2038 edges), PRO-
MAL (613 nodes and 1724 edges), GoalExplorer (364 nodes
and 859 edges), and Q-testing (339 nodes and 862 edges).
Additionally, RLDroid constructs the UTG with the highest
number of nodes and edges on all 29 apps. Regarding false
positives, GoalExplorer identified 3436 edges, but 2577 are
false positives. GoalExplorer yielded a significant number of
false positive edges because it uses static analysis to infer pos-
sible transitions and is affected by the low precision problem
in static analysis. PROMAL also yielded several false positive
edges, and 357 out of 2081 identified edges are false positives.
PROMAL uses machine learning to predict transitions between
UI pages, and due to the limitations of the dataset and machine
learning algorithms, this can also result in some false positives.
RLDroid does not generate false positive transitions because
it uses dynamic exploration to generate the final UTG.

For SceneDroid, although it enhances dynamic exploration
by leveraging ICC information and strategies for indirectly
launching activities, it still faces the problem of low UI

page coverage. Moreover, indirectly launching apps from non-
main activities sometimes fails. Q-testing utilizes Q-learning
to enhance dynamic exploration, but its primary goal is GUI
testing to discover crashes, rather than constructing a complete
UTG. Additionally, Q-testing initializes its Q-table using a
random strategy, leading to slow convergence. Consequently, it
fails to identify many UI pages and transitions, and the number
of nodes and edges identified by it is only about 39% and
32% of RLDroid, respectively. RLDroid uses the seed UTG
obtained through static analysis to guide dynamic exploration
and explores more UI pages in combination with a depth-first
strategy. Meanwhile, RLDroid uses the partially constructed
UTG to initialize the Q-table to accelerate its convergence.
Additionally, RLDroid designs a reward function to drive it to
discover more unvisited UI pages and transitions. Therefore,
compared to other tools, the UTG constructed by RLDroid is
more complete, containing more nodes and edges.

RLDroid yielded a total of 871 nodes and 2726 edges in the
29 apps, with no false positive edges. RLDroid significantly
outperforms the state-of-the-art GUI modeling techniques
in terms of the UTG’s accuracy and completeness.

RQ2: Contribution of Exploration Strategies. The last four
colunms in Table II shows the number of nodes and edges in
the UTG generated by RLDroidα and RLDroidβ . RLDroidα

generated a total of 361 nodes and 910 edges, whereas
RLDroid generated approximately 2.4 times and 3 times the
number of nodes and edges, respectively. Additionally, for
each app, RLDroid identifies a significantly higher number of
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nodes and edges compared to RLDroidα. Therefore, we can
see that the exploration strategy guided by seed UTGs plays
a crucial role in the construction process of UTGs. RLDroidβ

generated a total of 434 nodes and 1095 edges, while RLDroid
produced approximately twice and 2.5 times the number of
nodes and edges, respectively. Meanwhile, for each app, the
number of nodes and edges identified by RLDroid is also
significantly greater than that of RLDroidβ . Thus, the Q-
learning-enhanced exploration also plays an effective role in
the construction of UTGs.

For the exploration guided by seed UTGs, RLDroid lever-
ages the seed UTGs to quickly discover new UI pages and can
execute events on these new UI pages to access adjacent pages.
In this way, RLDroid continuously iterates its exploration,
ultimately significantly increasing the number of identified UI
pages and transitions. On the other hand, when RLDroid gets
stuck in some repeated UI pages, the depth-first strategy can
help it quickly jump out of the current page to conduct new
explorations, which also improves the efficiency of discovering
new pages. Regarding the overhead of statically constructing
seed UTGs, RLDroid takes an average of 22 seconds, which
is considered acceptable.

For the Q-learning-enhanced exploration, RLDroid utilizes
the partially constructed UTG during the exploration process
to initialize the Q-table, which makes the Q-value of each
event in the Q-table relatively accurate and thus accelerates the
discovery of new UI pages. Additionally, the reward function
we designed also guides RLDroid to explore towards new
UI pages. On the other hand, the total number of nodes
and edges generated by RLDroidα is 22 and 48 more than
those generated by Q-testing, respectively, which also indicates
that the Q-learning-enhanced exploration strategy of RLDroid
has been improved compared to traditional Q-learning based
exploration.

Both the seed-UTG-guided and Q-learning-enhanced ex-
plorations play effective roles in the construction of UTG,
and they both improve the completeness of UTG.

RQ3: Usefulness. Table III shows the coverage (%Cov) and
the number of crashes (#Cra) for each app tested with Monkey
guided by RLDroid (MO with RD), and Monkey without
RLDroid (MO without RD). The Monkey guided by RLDroid
achieved an average coverage of 50.3%, which is 1.6 times
that of the Monkey without RLDroid, and it only achieved
an average coverage of 31.4%. Across all apps evaluated,
the coverage of the Monkey guided by RLDroid consistently
surpassed that of the unguided Monkey, with the magnitude of
this improvement varying between 5 and 43 percentage points.
This demonstrates the efficacy of the more comprehensive
UTG produced by RLDroid in guiding automated testing, i.e.,
providing a comprehensive perspective for exploring the app
during automated testing.

With RLDroid, Monkey detected a total of 67 crashes from
29 apps, which is 4.5 times more than that without RLDroid.
The Monkey without RLDroid only found 15 crashes, and

TABLE III
RESULTS OF GUIDING AUTOMATED GUI TESTING TOOL

Id App MO with RD MO without RD
%Cov #Cra %Cov #Cra

1 ActivityDiary 40 2 7 0
2 AmazeFileManager 30 2 21 1
3 AnkiDroid 43 4 24 2
4 Collect 64 0 45 0
5 FirefoxLite 50 7 36 2
6 Geohashdroid 36 2 11 1
7 MaterialFBook 38 0 29 0
8 OmniNotes 53 3 41 0
9 Osmeditor 45 6 21 2
10 Phonograph 39 0 33 0
11 ScarletNotes 55 4 28 0
12 BeeCount 71 1 53 0
13 Glucosio 59 2 18 0
14 Gnucash 60 1 37 0
15 WorldClock 98 1 92 0
16 AntennaPod 59 4 30 1
17 36C3 Schedule 55 0 47 0
18 AnyMemo 40 0 30 0
19 AphotoManager 61 7 37 2
20 ArxivMobile 53 0 40 0
21 BookCatalogue 46 4 35 3
22 DalvikExplorer 70 0 52 0
23 Feeder 39 0 12 0
24 K9 16 8 6 0
25 Keepassdroid 31 1 7 0
26 MyExpenses 60 2 49 1
27 RingDroid 63 2 20 0
28 RunnerUp 47 4 19 0
29 Wikipedia 37 0 32 0

Avg/Sum 50.3 67 31.4 15

for 20 apps, it failed to detect any crashes. For each app,
in terms of crash detection, Monkey guided by RLDroid
performs better (at least not worse) than Monkey without
RLDroid. Therefore, the UTGs constructed by RLDroid can
help automated GUI testing tools find more bugs.

We give an example from our evaluated apps to describe the
usefulness brought by RLDroid. BookCatalogue 2 is a popular
book cataloguing app with over 500 thousand downloads on
Google Play. We trigger a detected crash by the following
steps. First, click the “Add Book” button on the homepage,
which will bring up a dialog for adding a book. Subsequently,
click the “Add Manually” button in the dialog, and the book
details page will appear. Next, select and click the “NOTES”
tab on this page, which will switch to a note fragment. Upon
interacting with the rating bar within this Fragment, we then
click on the menu button positioned at the top right corner
of the screen and select the ”Share” menu option. At this
point, the app crashes. Monkey failed to uncover this bug,
as it got stuck on the homepage. For RLDroid, it constructed
a UTG with 43 nodes and 218 edges. Guided by this UTG,
Monkey was able to successfully execute the aforementioned
steps, navigating to the note fragment, selecting the “Share”
menu item, and subsequently identifying this error.

2BookCatalogue. https://play.google.com/store/apps/details?id=com.
eleybourn.bookcatalogue
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With the guidance of RLDroid, there has been a notable
enhancement in both the coverage and the detection of
crashes by Monkey. The UTG constructed by RLDroid is
useful for automated GUI testing.

C. Threats to Validity

The main threats to external validity lie in the selection
of the apps. RLDroid is evaluated on 29 Android apps. Our
results may not be applicable beyond the 29 apps to which we
have applied RLDroid. To mitigate this threat, we chose apps
from two standard testing benchmarks, ANDROTEST [3] and
THEMIS [49], which has been used in previous studies [20],
[27], [41], [42].

Threats to internal validity are factored into our exper-
imental methodology and they may affect our results. We
manually explore apps to check false positive transitions,
which is potentially error-prone. To minimize this threat, at
least two researchers performed manual checks and compared
the experimental results to check for discrepancies.

VII. RELATED WORK

A. Static UTG Construction

There are several studies that utilize static analysis to
construct UTG. Among them, A3E [9] is the first to build
a static model of an Android app which constructs Activity
Transition Graph (ATG) by data flow analysis [40]. Gator
[13] leverage static reference analysis for GUI objects [50]
and context-sensitive static analysis of callback methods [51]
to construct a Window Transition Graph (WTG) which adds
components like menus and dialogs on the ATG. GoalExplorer
[15] further extends the WTG by adding other components
such as fragments, drawers, and broadcast receivers. There are
also some works that employ inter-component communication
(ICC) analysis to construct UTG. EPICC [10] is the first to
extract ICC information. Based on this, IC3 [11] improves the
modeling of ICC objects and enhances extraction capabilities.
StoryDroid [7] extends IC3 and adds the fragment and inner
class information on ATG. Fax [52] enhances the integrity of
ATG through multi-entry ICC analysis. However, due to the
weaknesses of reference analysis, using it to obtain UTGs can
result in a large number of false positive transitions. On the
other hand, static analysis struggles to identify dynamically
rendered UI pages. RLDroid leverages static analysis, com-
bined with Android documentation and the app’s call graph,
to obtain a relatively accurate seed UTG to guide automated
dynamic exploration.

B. Dynamic UTG Construction

To improve the accuracy of UTG, some researchers have
adopted dynamic exploration for constructing UTG, which
includes random strategies [37], [53], [54], model-based meth-
ods [14], [20], [55], [56], systematic search [41], [57] and
supervised learning based exploration [58]. However, dynamic
analysis cannot capture a complete UTG due to its low UI page
coverage. Therefore, some studies, such as Fax [52], GESDA

[59], StoryDistiller [8], SceneDroid [18] and ICCDROID [42],
integrate static and dynamic analysis to construct the UTG.
There are also studies that combine dynamic analysis with
machine learning to predict transitions between UI pages. Pro-
mal [19] uses machine learning to predict feasible transitions
in the WTG. ArchiDroid [21] leverages graph neural networks
to predict transitions in the ATG based on the graph structural
similarity of ATGs within the same category of apps. Different
from those works, RLDroid constructs a seed UTG to guide
the depth-first dynamic exploration and employs reinforcement
learning to enhance the completeness of UTG.

C. Reinforce Learning Based Testing

Recently, some studies [25], [27], [29], [31], [32] have
applied reinforcement learning to GUI testing. QBE [25]
categorizes states based on the number of widgets on the UI
page and learns the value of different types of events from a
set of Android apps. Q-testing [27] designs a curiosity-driven
exploration strategy to explore previously unvisited UI pages.
Based on this, DQT [31] optimizes the problem of compar-
ing similar states during exploration using Deep Q-Network
(DQN) and graph neural networks. ARES [29] utilizes Deep
Neural Networks (DNN) to learn optimal exploration strategies
from previous attempts and implements various reinforcement
learning algorithms such as DDPG, SAC, and TD3. Hawkeye
[32] uses deep reinforcement learning to learn from historical
exploration data and determine the priority of GUI opera-
tions related to code changes. However, the goal of these
studies is to detect more crashes and the UTGs generated
from dynamically testing are usually incomplete. By contrast,
RLDroid utilizes a partially constructed UTG for Q-learning
initialization and designs an exploration reward to discover
more unvisited UI pages.

VIII. CONCLUSION

In this paper, we propose a novel approach RLDroid to
effectively construct UTGs for Android apps. RLDroid con-
structs a relatively accurate seed UTG through static analysis
and leverages it, combined with a depth-first strategy, to guide
dynamic exploration. Building on this, we further design a Q-
learning-based strategy to enhance dynamic exploration and
generate the final UTG. Our extensive experiments on 29
apps demonstrate the effectiveness of RLDroid in constructing
UTGs for Android apps. RLDroid identified a total of 871
nodes and 2726 edges without any false positive edges, which
significantly outperforms the state-of-the-art GUI modeling
techniques. Additionally, the UTGs constructed by RLDroid
helped the automated GUI testing tool Monkey improve its
average coverage by 60% and discover 52 additional bugs.
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