
TimeMachine: Time-travel Testing of Android Apps
Zhen Dong

National University of Singapore
zhen.dong@comp.nus.edu.sg

Marcel Böhme
Monash University, Australia
marcel.boehme@monash.edu

Lucia Cojocaru
Politehnica University of Bucharest
lucia.cojocaru@stud.acs.upb.ro

Abhik Roychoudhury
National University of Singapore

abhik@comp.nus.edu.sg

ABSTRACT
We introduce a prototype of an automated Android app testing
technique. The distinctive feature of the technique is that it saves
program states in the execution and restores an interesting state
previously saved for further exploration when progress is slow so as
to continuously explore new program behavior (namely time-travel
testing). Our empirical results show that our technique outperforms
the-state-of-art techniques including Sapienz (used at Facebook).
Our technique has been developed as an fully automated Android
testing tool and packed into an Docker image for ease of use. Our
prototype is publicly available at https://github.com/DroidTest/
TimeMachine.

1 TIME-TRAVEL TESTING
Idea. Time-travel testing is a mobile app testing approach, which
saves app states in the execution and restores an interesting state
previously-saved for further exploration when progress is slow in
the hope of exploring new program behavior efficiently. An inter-
esting state is identified based on runtime observations, e.g., a state
is interesting or has potential to trigger new program behavior if
the state is visited for the first time. App state is identified by GUI
layout, two screens have an identifical state (abstractly) if they have
the same GUI layout. App states can be saved by taking system
snapshots when running on an emulator.

Boosting Mobile App Testing. Time-travel testing records inter-
esting states observed, and can travel back to any previous state
to launch a new execution. This enhances existing mobile app test-
ing techniques to explore program behavior more efficiently. For
instance, random testing (like Android Monkey) generates a very
long sequence of events to exercise apps, but often suffers from low
efficiency that execution loops in certain states (e.g., main screen).
Time-travel testing allows random testing to jump out of such state
loops and drive execution to infrequently visited states.

Search-based testing techniques systematically evolve a popula-
tion of event sequences so as to achieve certain objectives such as
maximal code coverage. The hope is that the mutation of fit event
sequences leads to the generation of even fitter sequences. How-
ever, the evolution of event sequences may be ineffective. Pertinent
app states which contributed to the original sequence’s fitness may
not be reached by a mutated event sequence because the original
path through the state space is truncated at the point of mutation.
Time-travel testing allows search-based techniques to identify the
part of input events that leads to pertinent app states and avoid
making any changes to this part during mutation, and generate

RQ1:Effectiveness of Time-travel Strategy

42

44

46

48

50

52

54

56

Monkey TimeMachine

Statement coverage (%)

0

50

100

150

200

Monkey TimeMachine

#Detected crashes

On 68 open source benchmark apps in AndroTest[1]

[1] http://bear.cc.gatech.edu/~shauvik/androtest/

TimeMachine achieves a significant improvement over Monkey.

1Figure 1: Statement coverage and number of crashes
achieved by Android Monkey and TimeMachine.

RQ2: Comparison with the-State-of-the-art

40

42

44

46

48

50

52

54

56

Sapienz Stoat TimeMachine

Statement coverage (%)

0

50

100

150

200

Sapienz Stoat TimeMachine

#Detected crashes

On 68 open source benchmark apps in AndroTest

TimeMachine achieves the best performance
in both statement coverage and #detected crashes.

2

Figure 2: Statement coverage and number of crashes
achieved by Sapienz, Stoat and TimeMachine on the open
source benchmark.

RQ3: Performance on Industrial Apps

0

5

10

15

20

Monkey Stoat TimeMachine

Statement coverage (%)

0

50

100

150

200

250

300

Monkey Stoat TimeMachine

#Detected crashes

On 37 close-source Android apps in industrial benchmark[1]

[1] https://dl.acm.org/doi/10.1145/3238147.3240465

TimeMachine achieves the best performance
in both statement coverage and #detected crashes.

3Figure 3: Statement coverage and number of crashes
achieved by Monkey, Stoat and TimeMachine on the closed
source benchmark.

inputs that explore the pertinent app states.

Empirical Results.We develop the first time-travel-enabled test
generator TimeMachine for Android apps by enhancing Android
Monkey (the random testing tool released by Google) with our time-
travel technique, and evaluated TimeMachine on three widely-used
data sets. Experimental results show:

https://github.com/DroidTest/TimeMachine
https://github.com/DroidTest/TimeMachine

NASAC ’20’, Nov. 19–22, 2020, Chongqing, China Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik Roychoudhury

Automated test
generators, e.g. Monkey

State
identification

Coverage
monitor

State
recorder

State
manager

Snapshot
creator

Lack of progress
detection

Snapshot
restorer

Snapshot Pool

Interesting state
detection

Progressive
state selection

State transition

State graph

A snapshot

Android OS

State observer

A snapshot

Developer

Figure 4: Time travel framework. Modules in grey are configurable, allowing users to adjust strategy according to scenarios.

TimeMachine achieves a significant improvement over Android
Monkey in terms of statement coverage and the number of
detected crashes. Meanwhile, TimeMachine achieves the best
performance compared to the-state-of-art techniques on both
open-source and closed-source benchmarks.

Figure 1 shows results achieved byAndroidMonkey and TimeMa-
chine on the AndroTest benchmark [10]. AndroTest is a standard
testing benchmark for Android testing containing 68 open source
android apps and has been used to evaluate a large number of
Android testing tools.

TimeMachine achieves 54% statement coverage on average and
detects 199 unique crashes for 68 benchmark apps. Android
Monkey achieves 47% statement coverage on average and detects
115 unique crashes. TimeMachine covers 1.15 times statements
and reveals 1.73 times crashes more than Android Monkey.

Figure 2 shows results achieved by Sapienz, Stoat, TimeMachine
on the AndroTest benchmark. Sapienz [12] is search-based Android
app testing tool and used at Facebook. Stoat [13] is one of the most
recent techniques for Android testing. These testing tools have also
been adequately tested and are standard baselines in the Android
testing literature.

TimeMachine achieves the highest statement coverage on aver-
age (54%) and is followed by Sapienz (51%), Stoat (45%). TimeMa-
chine detects the most crashes (199) as well, followed by Stoat
(140), Sapienz (121) and Monkey (48).

Figure 3 show results achieved by Monkey, Stoat, and TimeMa-
chine on the industial benchmark [14]. IndustrialApps was a bench-
mark suite created in 2018 to evaluate the effectiveness of Android
testing tools on real-world apps. The authors sampled 68 apps from
top-recommended apps in each category on Google Play, and suc-
cessfully instrumented 41 apps with a modified version of Ella [4].
In our experiment, we chose to use the original version of Ella
and successfully instrumented 37 apps in Industrial app-suite. On
this benchmark, we could not compare with Sapienz because the
publicly available version of Sapienz is limited to an older version
of Android (API 19).

TimeMachine achieves the highest method coverage 19% and the
most found crashes 281 among all evaluated techniques. Com-
pared to baseline MS and MR, TimeMachine improves method
coverage to 19% from 17% and 15%, respectively.

Publication.Ourwork [11] was accepted on the 42nd international
conference on Software Engineering (ICSE’20) (won the ACM SIG-
SOFT Distinguished Paper Award).

2 PROTOTYPE DESIGN & IMPLEMENTATION
We design a general time-travel framework for Android testing,
which allows us to save a particular discovered state on the fly
and restore it when needed. Figure 4 shows the time-travel infra-
structure. The Android app can be launched either by a human
developer or an automated test generator. When the app is inter-
acted with, the state observer module records state transitions and
monitors the change of code coverage. States satisfying a prede-
fined criteria are marked as interesting, and are saved by taking a
snapshot of the entire simulated Android device. Meanwhile the
framework observes the app execution to identify when there is a
lack of progress, that is, when the testing tool is unable to discover
any new program behavior over the course of a large number of
state transitions. When a “lack of progress” is detected, the frame-
work terminates the current execution, selects, and restores the
most progressive one among previously recorded states. A more
progressive state is one that allows us to discover more states quickly.
When we travel back to the progressive state, an alternative event
sequence is launched to quickly discover new program behaviors.

The framework is designed as easy-to-use and highly-configurable.
Existing testing techniques can be deployed on the framework by
implementing the following strategies:

• Specifying criteria which constitute an “interesting” state,
e.g., increases code coverage. Only those states will be saved.

• Specifying criteria which constitute “lack of progress”, e.g.,
when testing techniques traverse the same sequence of states
in a loop.

• Providing an algorithm to select the most progressive state
for time-travelling when a lack of progress is detected.

TimeMachine: Time-travel Testing of Android Apps NASAC ’20’, Nov. 19–22, 2020, Chongqing, China

State
Identification

ADB Daemon

ADB ServerCov. Data Collector

Guided Event Generator

Virtualbox Manager

Monkey UIautomator

Sys Event
Generator

Coverage
Monitor

TimeMachine

Android Virtual Machine (Android OS)

Docker container (Host OS)

State Corpus

VM Controller

Figure 5: Architecture of TimeMachine implementation.

2.1 Taking Control of State
State identification. In order to identify what constitutes a state, our
framework computes an abstraction of the current program state.
A program state in Android app is abstracted as an app page which
is represented as a widget hierarchy tree (non-leaf nodes indicate
layout widgets and leaf nodes denote executable or displaying wid-
gets such as buttons and text-views). A state is uniquely identified
by computing a hash over its widget hierarchy tree. In other words,
when a page’s structure changes, a new state is generated.

To mitigate the state space explosion problem, we abstract away
values of text-boxes when computing the hash over a widget hier-
archy tree. By the above definition, a state comprises of all widgets
(and their attributes) in an app page. Any difference in those widgets
or attribute values leads to a different state. Some attributes such as
text-box values may have huge or infinite number of possible values
that can be generated during testing, which causes a state space
explosion issue. To find a balance between accurate expressiveness
of a state and state space explosion, we ignore text-box values for
state identification. Our practice that a GUI state is defined without
considering text-box values is adopted by previous Android testing
works as well [8, 9].

State saving & restoring. We leverage virtualization to save and
restore a state. Our framework works on top of a virtual machine
where Android apps can be tested. A virtual machine (VM) is a
software that runs a full simulation of a physical machine, including
the operating system and the application itself. For instance, a VM
with an Android image allows us to run Android apps on a desktop
machine where related hardware such as the GPS module can be
simulated. App states can be saved and restored with VM.

Our framework records a program state by snapshotting the
entire virtual machine state including software and emulated hard-
ware inside. States of the involved files, databases, third-party li-
braries, and sensors on the virtual device are kept in the snapshot
so that the state can be fully resumed by restoring the snapshot.
This overcomes the challenge that a state may not be reached from
the initial state by replaying the recorded event sequence due to
state change of background services.

2.2 Collecting State-Level Feedback
To identify whether a state is “interesting”, our framework monitors
the change in code coverage. Whenever a new state is generated,
code coverage is re-computed to identify whether the state has
potential to cover new code via the execution of enabled events.
Our framework supports both open-source and close-source apps.
For open-source apps, we collect statement coverage using the
Emma coverage tool [5]. For closed-source, industrial apps, we
collect method coverage using the Ella coverage tool [4]. For closed-
source apps, statement coverage is difficult to obtain.

Our framework uses a directed graph to represent state tran-
sitions, where a node indicates a discovered state and an edge
represents a state transition. Each node maintains some informa-
tion about the state: whether there is a snapshot (only states with
snapshots can be restored), how often it has been visited, how often
it has been restored, and so on. This information can be provided
to testing tools or human testers to evaluate how well a state has
been tested and to guide execution.

2.3 Implementation
Our time travel framework is implemented as a fully automated
app testing platform, which uses or extends the following tools:
VirtualBox [1], the Python library pyvbox [7] for running and
controlling the Android-x86 OS [3], Android UI Automator [6] for
observing state transitions, and Android Debug Bridge (ADB) [2] for
interacting with the app under test. Figure 5 gives an architectural
overview of our platform. Components in grey are implemented
by us while others are existing tools that we used or modified.

For coverage collection, our framework instruments open-source
apps using Emma [5] (statement coverage) and closed-source apps
using Ella [4] (method coverage). Ella uses a client-server model
sending coverage data from the Android OS to the VM host via a
socket connection. Unfortunately, this connection is broken every
time a snapshot is restored. To solve this issue, we modified Ella to
save coverage data on the Android OS to actively pull as needed.

On top of the time travel framework, we implement TimeMa-
chine. TimeMachine works with the most widely-used version,
Android Nougat with API 25 (Android 7.1). To collect state-level
feedback, we modified Android Monkey and UI Automator to mon-
itor state transition after each event execution. TimeMachine also

NASAC ’20’, Nov. 19–22, 2020, Chongqing, China Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik Roychoudhury

includes a system-level event generator taken from Stoat [13] to
support system events such as phone calls and SMSs.

More importantly, we deploy the whole system into a docker con-
tainer such that users can conveniently launch multple containers
for parallel exectuions.

2.4 Artifact
Our time-travel Android app testing tool TimeMachine has been
evaluated as Available and Reusable by ROSE (Recognizing and
Rewarding Open Science in Software Engineering). We also made
TimeMachine publicly available on the Github. Since released in
Feb. 2020, the tool has been stared 67 times and been downloaded
hundreds times by different universities or institutions. Our tool is
at https://github.com/DroidTest/TimeMachine

REFERENCES
[1] 2018. VMWare VirtualBox. https://www.virtualbox.org/
[2] 2019. Android Debug Bridge. https://developer.android.com/studio/command-

line/adb
[3] 2019. Android-x86. http://www.android-x86.org/
[4] 2019. ELLA: A Tool for Binary Instrumentation of Android Apps. https:

//github.com/saswatanand/ella
[5] 2019. EMMA: a free Java code coverage tool. http://emma.sourceforge.net/
[6] 2019. Google UI Automator. https://developer.android.com/training/testing/ui-

automator

[7] 2019. A python library for VirtualBox. https://pypi.org/project/pyvbox/
[8] Wontae Choi, George C. Necula, and Koushik Sen. 2013. Guided GUI testing of

android apps with minimal restart and approximate learning. In Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented Programming Sys-
tems Languages & Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis,
IN, USA, October 26-31, 2013. 623–640. https://doi.org/10.1145/2509136.2509552

[9] Wontae Choi, Koushik Sen, George Necula, and Wenyu Wang. 2018. DetReduce:
Minimizing Android GUI Test Suites for Regression Testing. In Proceedings of the
40th International Conference on Software Engineering (Gothenburg, Sweden) (ICSE
’18). ACM, New York, NY, USA, 445–455. https://doi.org/10.1145/3180155.3180173

[10] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Auto-
mated Test Input Generation for Android: Are We There Yet? (E). In Proceedings
of the 2015 30th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE) (ASE ’15). 429–440. https://doi.org/10.1109/ASE.2015.89

[11] Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik Roychoudhury. 2020.
Time-travel Testing of Android Apps. In Proceedings of the 42nd International
Conference on Software Engineering (ICSE ’20). 1–12.

[12] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective Automated
Testing for Android Applications. In Proceedings of the 25th International Sym-
posium on Software Testing and Analysis (Saarbrücken, Germany) (ISSTA
2016). ACM, New York, NY, USA, 94–105.

[13] Ting Su, GuozhuMeng, Yuting Chen, KeWu,Weiming Yang, Yao Yao, Geguang Pu,
Yang Liu, and Zhendong Su. 2017. Guided, Stochastic Model-based GUI Testing
of Android Apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering (Paderborn, Germany) (ESEC/FSE 2017). ACM, New York,
NY, USA, 245–256.

[14] Wenyu Wang, Dengfeng Li, Wei Yang, Yurui Cao, Zhenwen Zhang, Yuetang
Deng, and Tao Xie. 2018. An Empirical Study of Android Test Generation Tools
in Industrial Cases. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering (Montpellier, France) (ASE 2018). ACM, New
York, NY, USA, 738–748. https://doi.org/10.1145/3238147.3240465

https://github.com/DroidTest/TimeMachine
https://www.virtualbox.org/
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
http://www.android-x86.org/
https://github.com/saswatanand/ella
https://github.com/saswatanand/ella
http://emma.sourceforge.net/
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
https://pypi.org/project/pyvbox/
https://doi.org/10.1145/2509136.2509552
https://doi.org/10.1145/3180155.3180173
https://doi.org/10.1109/ASE.2015.89
https://doi.org/10.1145/3238147.3240465

	Abstract
	1 Time-travel Testing
	2 Prototype Design & Implementation
	2.1 Taking Control of State
	2.2 Collecting State-Level Feedback
	2.3 Implementation
	2.4 Artifact

	References

