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Abstract—Software misconfigurations are responsible for a
substantial part of today’s system failures, causing about one-
quarter of all customer-reported issues. Identifying their root
causes can be costly in terms of time and human resources.
We present an approach to automatically pinpoint such defects
without error reproduction. It uses static analysis to infer
the correlation degree between each configuration option and
program sites affected by an exception. The only run-time
information required by our approach is the stack trace of
a failure. This is an essential advantage compared to existing
approaches which require to reproduce errors or to provide
testing oracles. We evaluate our approach on 29 errors from
4 configurable software programs, namely JChord, Randoop,
Hadoop, and Hbase. Our approach can successfully diagnose 27
out of 29 errors. For 20 errors, the failure-inducing configuration
option is ranked first.

Keywords—Configuration errors, Static analysis, Automated
debugging

I. INTRODUCTION

Software configuration errors are one of the major causes
of today’s system failures [7], [16], [17], [32], [18]. The
investigation in [33] shows that around 27% of the issues
in one company’s costumer-support database are labeled as
configuration-related. Recently misconfiguration-induced out-
ages have been reported from major IT companies, including
Microsoft, Amazon and Facebook [25], [26], [12]. Moreover,
end-users also suffer from various configuration errors of
software.

According to a recent study [33], parameter-related mis-
configurations account for 70%-85% of all users’ configura-
tion errors. A parameter-related misconfiguration is consid-
ered that one or more configuration parameters (or config-
uration options) are set mistakenly by users. The mistaken
settings lead to abnormal behavior of a system. Our work
addresses one type of parameter-related misconfigurations,
a crashing error caused by the incorrect value of a single
configuration option.

Diagnosing such errors is both time-consuming and te-
dious. Most applications have no dedicated repository of con-
figuration issues. Seeking help from the software developers
usually takes long time to get responses.

To address this dilemma, many groups [27], [1], [5], [14],
[19], [24], [35], [2], [37], [23] have devoted themselves to

develop tools for automated debugging of configuration errors.
The current generation of these tools and approaches require
extensive data from the failing program run. For instance,
ConfDiagnoser [37] adopts dynamic analysis to record be-
havior of the program with mistaken configuration. ConfAid
[2] employs dynamic analysis to monitor data and control
dependence during the failing program execution. All these
tools assume that errors can be reproduced.

In the real world, reproducing even classical (i.e. code)
errors is difficult. Errors often occur during production runs.
Users prefer not to report all essential information to repro-
duce an error because of privacy and economic concerns.
Research [38] has shown that there is a strong mismatch
between what developers need to reproduce and fix a bug
and what users tend to provide. Another study [3] has shown
that bug reports lack information needed for bug reproduction.

For some cases, reproducing configuration errors can be
more costly and critical in terms of data privacy than repro-
ducing classical errors. One reason is that a misconfiguration
might manifest only with specific settings or a state of the
runtime environment. This environment information needs to
be collected for error reproduction, and the environment needs
to be replicated as well. Additionally, for distributed systems,
the root cause of a misconfiguration can be an incorrect
setting at remote nodes, which creates additional cost of error
reproduction.

Providing values of configuration setting, failure-inducing
program input, and environment information can conflict with
confidentiality concerns of a user. Error reproduction in data-
sensitive scenarios is likely to be performed only by the user.
This precludes the involvement of experienced third parties
such as application developers.

Aiming at the issue above, we propose an approach
capable of diagnosing misconfigurations with only minimal
runtime information collected during the failing run. Specifi-
cally, in the preprocessing phase our approach needs as input
the program source code (or compiled, not obscured Java
bytecode) and a list (but not values) of available configuration
options. All this data is independent of particular deployment
scenario and frequently publicly available, e.g. in case of open
source software. For the diagnosis step, users need to provide
the stack trace of an error, and no other execution-related data.

The approach is inspired by the way how developers



java.lang.Error: Failed to load relation notexist Index
at chord.project.Messages.fatal(Messages.java:24)   t
at chord.project.Main.run(Main.java:82)            t-1

...                     ...
at chord.project.Main.main(Main.java:50)            1

...
23 String msg = String.format(format, args);
24 Error ex = new Error(msg);
25 ex.printStackTrace();

...

...
80 String[] relNames = Utils.toArray(Config.printRels);
81 if (relNames.length > 0) {
82 project.printRels(relNames);

...

...
50 run();

...

...

Figure 1. Example showing how developers diagnose a configuration error
based on the stack trace. The statements in bold (red) are program points
referenced by the stack trace entries. The statement in italic (green) is a read
point of a configuration option.

typically debug erroneous configuration settings using a stack
trace. As shown in Figure 1 the first step is usually to
check the top frame of the stack trace. The program site
referenced by this frame is investigated whether it is “close”
to a statement reading the value of some configuration option.
If this is the case, the next step is to analyze the dependency
between the program site and the read point of the option.

If the analysis on the top frame of the stack trace does not
pinpoint any root cause candidate, it will be repeated for each
of the subsequent stack frames. In Figure 1, the root cause
candidate can be detected from the analysis of the second
frame of the stack trace.

Based on our previous work, called ConfDebugger [6], this
paper proposes a systematic approach to compute the strengths
of potential “links” between each configuration option and
program sites where the error manifests. On this basis we are
able to rank options by their likelihood to be the root cause of
a failure. The contributions of this work are following ones.

• We propose an automated approach for diagnosing
configuration errors which relies only on static analy-
sis. The approach does not require reproducing errors.
After a one-time preprocessing of the source code
and configuration options, it needs as only runtime
input the stack trace of the current error. There is no
need for program re-execution, code instrumentation
or modifications of the current configuration settings.

• We evaluate the accuracy of our approach and its im-
plementation ConfDoctor on 29 configuration errors
from 4 open source application programs - JChord,
Randoop, Hadoop, and HBase. ConfDoctor can suc-
cessfully diagnose 27 out of 29 errors. For 20 errors,
the root cause configuration option is the first-ranked
suggestion. For the other 7 diagnosed errors, the root

cause is ranked in the top four.

In Section II we detail our approach. Section III discusses the
implementation. In Section IV we evaluate the accuracy of the
overall approach, and compare the results against our previous
work, ConfDebugger. Section V discusses related work, and
Section VI states our conclusions.

II. APPROACH DESCRIPTION

Our approach considers the source code of a program as a
set of statements S1, S2, . . .. Each statement is identified by a
unique program point, also called a (program) site; thus, two
println-statements at different sites are seen as different.

We consider configurations as a set of key-value pairs,
where the keys are strings and the values have arbitrary type.
This schema is supported by POSIX, Java Properties and
Windows Registry, and is used in a range of projects [19].

For a program, we denote n configuration options of a
debugged application by c1, . . . , cn. For option ci, we call a
statement (program point) which reads-in value of ci an option
read point and denote it by ORP(ci). Note that for each ci
they might exist multiple option read points.

In the following, non-capitalized letters (e.g. i, j, n, t)
represent integers or configuration options (c1, c2, . . .), letters
P, R, S, Q denote statements, M , N are methods, and X, Y,
Z are sets.

A. Overview

Our approach implies a following diagnosis workflow. For
a targeted application we first perform a one-time configura-
tion propagation analysis (Section II-B) to identify statements
possibly affected by values of each configuration option.
Given a crashing error and its error stack trace (Figure 1) we
conduct a backward slicing analysis (Section II-C) to identify
statements which impact program points referenced by this
trace. As next an intersection of both sets of statements is
computed (called chopping, Section II-D). We use this result
to correlate each configuration option with a given error stack
trace (Section II-E). Finally, a list of configuration options
ranked by the correlation degree is reported to users.

B. Configuration propagation analysis

The propagation analysis consists of two steps.

Searching option read points. We assume that configura-
tion options of a software program are published. Users are
allowed to acquire the list of configuration options. According
to the configuration option list, our approach locates all option
read points by searching configuration option names in the
source code of the corresponding version.

Propagation analysis. To identify all statements affected
by a configuration option we use a static technique called
forward slicing [30]. For a seed statement S, it attempts to
identify the set of all statements (called forward slice FS(S))
affected by the execution of S.

We deploy a variant of forward slicing which considers
data dependence without control dependence (Section III).



The reason is that considering control dependence includes in
slices FS(S) too many statements which are only indirectly
affected by a configuration option. This might lead to a
decreased accuracy of the diagnosis, which was confirmed
by our evaluation.

For a particular configuration option ci the forward slicing
analysis is conducted by using all option read points of
the option ci as seeds. Consequently, we define the merged
forward slice MFS(ci) as the union of all forward slices over
all option read points of ci:

MFS(ci) =
⋃

S is ORP(ci)

FS(S).

C. Stack trace analysis

A typical stack trace is an ordered list of size t pointing
to statements in nested methods called up to the point of
failure. Each such referenced statement is called a frame
execution point and is denoted by FEP(j), for j = 1, . . . , t.
We index stack trace entries from bottom to top, i.e. from
the main method to the method where an exception occurs
(see Figure 1). Thus, FEP(t) is the program site where an
exception has been raised, and FEP(1) is in the main-method.

To identify statements which have influenced program
points referenced by a stack trace, we use backward slicing
[30], a static analysis technique analogous to forward slicing.
For a seed statement S, the backward slice BS(S) is a set of
all statements whose execution might have influenced S.

Our stack trace analysis considers all frame execution
points, not just the (top) FEP where the exception is raised.
Consequently, we treat each FEP as a seed and compute
its backward slice. The results are used to obtain a merged
backward slice MBS which is a union of all backward slices:

MBS =

t⋃
j=1

BS(FEP(j)).

Our stack trace analysis focuses on analysis in the ap-
plication program and does not consider tools or third-party
libraries. If a frame execution point does not reside in the
source code of the application program, our technique is able
to automatically exclude it using the package name.

Contrary to forward slicing, our implementation of back-
ward slicing considers both data dependence and control
dependence. The primary reason is that a stack trace records
the execution path before an error occurs. It reflects the
program’s flow of execution. Without considering control
dependence, the stack trace analysis would miss statements
affecting FEPs. Details are omitted due to space constraints.

D. Chopping

The core idea of our approach is to identify configuration
options ci for which there exists an execution path between
some ORP(ci) and some FEP(j). As illustrated in Figure 2,
if an intersection of forward slice of ORP(ci) and a backward
slice FEP(j) is not empty, such execution path might exist.
Since we have multiple ORPs (per option) and multiple FEPs,

BBS
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ORP(c2)

ORP(c1)

ORP(c1)

FEP(2)

FEP(3)

FEP(1)

BFS(c1)

FS

FS

FS BS

BS

BS

BCh(c1) Source code

Figure 2. An example illustrates how the option read points ORPs of
configuration options c1 and c2 and frame execution points FEPs of an
exception give rise to the merged forward slice MFS(c1) of c1, the merged
backward slice MBS, and the merged chop MCh(c1)

Sf

S1

Sb

S3

S2

...
i+1    ...
i+2    ...
i+3    ...

...

S1

Sb

The method 
containing S1 and Sb

Figure 3. A fragment of a call graph with call paths from the method
containing Sf to the method containing Sb

the following definition is needed. For a given configuration
option ci the merged chop MCh(ci) is the intersection of the
merged forward slice MFS(ci) and the merged backward slice
MBS:

MCh(ci) = MFS(ci)
⋂

MBS.

E. Correlation degrees

This section describes two variants of metrics used for
ranking of configuration options based on the results of
the propagation analysis and stack trace analysis. We first
introduce some definitions.

Method distance. A static call graph CG of a program
is a directed graph where each node represents a method
and a directed edge (M, N) stands for method M calling
method N . In CG, the method distance dmeth(Sp, Sq) of two
statements Sp and Sq is 1 plus the length of the shortest
undirected path in CG between a method containing Sp and a
method containing Sq . Obviously dmeth(Sp, Sq) = 1 if both
Sp and Sq are within the same method.

Method distance is used to estimate the “closeness” of
any statement in a merged chop MCh(ci) from an ORP or



a FEP. We illustrate this in Figure 3 showing a partial call
graph (each node represents a method). Let statement Sf be
one of the ORP(ci) and statement Sb one of the FEPs for
a fixed configuration option ci. In Figure 3 the top node
labeled by Sf represents the method containing the statement
Sf (analogously, statement Sb is in a method represented by
the bottom node).

Furthermore, assume that S1, S2, S3 are statements in
the intersection FS(Sf )

⋂
BS(Sb). Thus, dmeth(Sf , S1) = 3,

dmeth(Sb, S1) = 1, dmeth(Sf , S2) = 4, dmeth(Sb, S2) = 2,
dmeth(Sf , S3) = 3 and dmeth(Sb, S3) = 2. Obviously these
statements differ by their distance to Sf and to Sb.

Forward dependency degree. Let ci be a configuration
option with a non-empty merged chop. Furthermore, let Sf

be an option read point ORP(ci) and Sb be a frame execution
point FEP such that the forward slice of Sf has a non-
empty intersection with the backward slice of Sb.We define
a forward dependency degree Dfw(Sf , Sb) as follows. Let
S be a statement in FS(Sf ) ∩ BS(Sb) with the smallest
method distance dmeth(Sb, S) to Sb, and in case of ambiguity
with the smallest method distance dmeth(Sf , S) to Sf . Then
Dfw(Sf , Sb) is

Dfw(Sf , Sb) = (1/dmeth(Sf , S) + 1/dmeth(Sb, S)) ∗ (1 + w)

where w is set to 1 if S and Sb are in the same source line
(and so same method), and w = 0 otherwise.

In the example in Figure 3, S1 is closest to Sb among
statements S1, S2 and S3. Further, S1 and Sb are in same
source line. Consequently, w is set to 1 and so Dfw(Sf , Sb) =
(1/3 + 1) ∗ (1 + 1) = 8/3.

Backward dependency degree. With the meaning of ci, Sf

and Sb as above, we define a backward dependency degree
Dbw(Sf , Sb) as follows. Let S be a statement in FS(Sf ) ∩
BS(Sb) with a smallest method distance dmeth(Sf , S) to Sf ,
and in case of ambiguity with a smallest method distance
dmeth(Sb, S) to Sb. Then Dbw(Sf , Sb) is

Dbw(Sf , Sb) = (1/dmeth(Sf , S) + 1/dmeth(Sb, S)) ∗ (1 + w)

where w is set to 1 if S and Sf are in the same source line,
and w = 0 otherwise.

The intuition behind forward (and analogously back-
ward) dependency degree is the following one. Value of
Dfw(Sf , Sb) is larger if the method distances of statements
“affected by Sf” (i.e. in FS(Sf )) to Sb can be small. Further-
more, if S and Sb are in same source line (i.e. w = 1), then
Sf can directly reach Sb, i.e., Sb is contained in the forward
slice of Sf . All these cases indicate a higher probability that
the particular option ci (giving rise to Sf and Sb) can be
responsible for the fault.

1) Simple correlation degree : We introduce a metric for
ranking configuration options which is based on a sum of
a largest forward dependency degree and a largest backward
dependency degree.

For a fixed configuration option ci let X be the set of all
ORPs of ci and Y be the set of all FEPs. For such a ci the
largest possible value Dfw(Sf , Sb) of a forward dependency

degree can be found by considering all combinations of Sf

and Sb. This gives rise to a definition of a forward correlation
degree Corfw(ci):

Corfw(ci) = max (Dfw(Sf , Sb) |Sf ∈ X, Sb ∈ Y ) .

We set Corfw(ci) = 0 if there is no pair Sf ∈ X, Sb ∈
Y with FS(Sf ) ∩ BS(Sb) 6= ∅ (and so no Dfw(Sf , Sb) is
defined).

Analogously, we define a backward correlation degree
Corbw(ci) as

Corbw(ci) = max (Dbw(Sf , Sb) |Sf ∈ X, Sb ∈ Y ) .

Again we set Corbw(ci) = 0 if there is no pair Sf ∈ X, Sb ∈
Y with FS(Sf ) ∩ BS(Sb) 6= ∅ for ci.

Our first metric for ranking configuration options called
simple correlation degree Cor is the sum of the forward and
backward correlation degrees:

Cor(ci) = Corfw(ci) + Corbw(ci).

For evaluation purposes we also compute statistics
about a pair Sf (a ORP) and Sb (a FEP) which
maximizes Corfw(ci) or Corbw(ci). For a fixed ci,
let (Sfw

f , Sfw
b ) = argmaxSf ,Sb

Dfw(Sf , Sb) and let
(Sbw

f , Sbw
b ) = argmaxSf ,Sb

Dbw(Sf , Sb). Then the minimal
ORP to FEP distance dmin(ci) is a smaller one of the method
distances dmeth(S

fw
f , Sfw

b ) and dmeth(S
bw
f , Sbw

b ). The index
of the stack trace entry corresponding to Sfw

b (or to Sbw
b if

dmeth(S
bw
f , Sbw

b ) is used) is called the key frame for ci.

2) Correlation degrees with stack order: The above-
defined correlation degree does not consider the order of stack
frames. However, the order of stack frames is significant for
diagnosing the root cause of an error. A stack trace records
the execution path in reverse “chronological” order from the
most recent execution to the earliest execution. Paper [21]
investigates 2,321 bugs from the ECLIPSE project which are
fixed in the method referenced by one of the stack frames.
The result shows the number of bugs fixed in the recently
executed methods is larger than that of ones fixed in the early
executed methods.

To consider the impact of stack frame ordering we intro-
duce an stack order factor f :

f(j) = 1− 1/j

where f is a weight function for each stack frame and j is
the index of a stack frame (see Figure 1). The index j of the
stack frame referencing the main method of a program is 1,
yielding value f(1) = 0. We use the stack order factor to
refine the definitions of the forward and backward correlation
degree.

For the configuration option ci the forward correlation
degree with stack order is defined as:

Corstfw(ci) = max (Dfw(Sf , Sb) ∗ f(j) |Sf ∈ X, Sb ∈ Y )



where j is the index of the stack frame corresponding to Sb

(while setting Corstfw(ci) = 0 if there is no pair Sf , Sb with
FS(Sf ) ∩ BS(Sb) 6= ∅).

Analogously, the backward correlation degree with stack
order is defined as:

Corstbw(ci) = max (Dbw(Sf , Sb) ∗ f(j) |Sf ∈ X, Sb ∈ Y )

where j is the index of the stack frame corresponding to Sb

(with Corstbw(ci) = 0 if no Dbw(Sf , Sb) is defined).

We are ready to define the main metric used for ranking
of options, namely the correlation degree with stack order:

Corst(ci) = Corstfw(ci) + Corstbw(ci) .

F. Ranking configuration options

As noted in Section II-A, after the error stack trace is
available, we compute the correlation degrees for all con-
figuration options as described in Section II-E. We can do
this either using the simple correlation degree Cor or the
correlation degree with stack order Corst. Since the latter
choice produces better results, we consider it as the “final”
metric of our approach (results for Cor are still shown in the
evaluation).

A ranked list of configuration options obtained in this way
is reported to users, with top entries (highest values of Corst)
indicating the most likely root causes of a failure.

III. IMPLEMENTATION

We implemented a Java-based prototype, called Conf-
Doctor, on top of the WALA library [28]. WALA is
a static analyzer tool developed by IBM. We use it
to compute forward and backward slices. In particular,
in a default approach we use for both slicing types
NO_BASE_NO_HEAP_NO_EXCEPTIONS as the value of
the DataDependence parameter. For the ControlDependence
parameter we use NONE for forward slicing, and FULL for
backward slicing.

We also use WALA to compute the (static) call graph
needed for the method distance dmeth computation. To achieve-
higher precision, we use here a more expensive algorithm, the
Control Flow Analysis 0-CFA [8]. While our analysis focuses
on the code in the application program, WALA needs to take
into consideration Java libraries for building the call graph.
Without considering e.g. callback methods, the call graph can
be incomplete or imprecise.

Finally, we employ a database management system
(specifically, MySQL) to store data about statements. Such
data includes (among others) the fully-qualified class name,
line number in the class file, and the method distance of each
statement.

Program (version) Lines of Code #Options
JChord (2.1) 23391 79
Randoop (1.3.2) 18587 57
Hadoop (0.20.2) 103649 141
HBase (0.92.2) 187433 91

Table I. BENCHMARK APPLICATIONS. COLUMN “LINES OF CODE” IS
THE NUMBER OF LINES OF CODE AS COUNTED BY CLOC [4]. FOR

HADOOP AND HBASE, IT IS THE NUMBER OF LINES OF JAVA SOURCE
CODE. COLUMN “#OPTIONS” IS THE NUMBER OF AVAILABLE

CONFIGURATION OPTIONS.

IV. EVALUATION

In this section we evaluate our approach and its imple-
mentation named ConfDoctor under the following aspects.
First, we evaluate the effectiveness of the whole approach by
investigating the rank of the actual root cause in the diagnosis
results. Second, we evaluate the precision of both ranking
metrics: the simple correlation degree Cor and the correlation
degree with stack order Corst. Third, we explore the impact
of static analysis with different types of dependence analyses
on the accuracy of diagnosis results. Finally, we make a
comparison with our previous work ConfDebugger [6].

A. Experimental setup

1) Subject applications: We evaluated ConfDoctor on four
Java programs shown in Table I. JChord [11] is a program
analysis platform for Java byte code initiated by Mayur Naik
and Alex Aiken at Stanford University [19]. Randoop [20]
is an automatic unit test generator for Java maintained by a
product group at Microsoft. Apache Hadoop [9] comprises a
distributed file system, a MapReduce implementation, and a
job scheduling/cluster management framework. Apache Hbase
[10] is a distributed, scalable, big data store which runs on
top of Apache Hadoop’s file system.

2) Configuration errors: We collected 29 configuration
errors1 listed in Table II. We evaluated all the configuration
errors we found; we did not remove errors on which Conf-
Doctor does not work well.

The errors for JChord are taken from [19], and also used
in [37]. The data set contains 9 crashing errors. Since one of
these errors is without a stack trace, we use the remaining 8
errors to evaluate our technique.

Randoop errors are injected by the tool ConfErr [13].
For a working configuration of Randoop, we use ConfErr to
insert some typographic errors into the value of one of the
configuration options. If the program crashes and produces a
stack trace for the erroneous configuration, we use the error
in our evaluation.

Hadoop errors are real world misconfigurations which are
collected by us from the web and our own experiences of
using Hadoop. Most of them can be found on the website
Stack Overflow [22]. Among these, three are tricky con-
figuration errors. Error #18 occurs due to the incompatible
namespaceID. After formatting the namenode, the directory
specified by “dfs.data.dir” should be removed. Presence of

1Their detailed description can be downloaded from the web site
http://goo.gl/npOCVC.

http://goo.gl/npOCVC


Application Id Error description

JChord

1 No main class is specified
2 No main method in the specified class
3 Running a nonexistent analysis
4 Invalid context-sensitive analysis time
5 Printing nonexistent relations
6 Disassembling nonexistent classes
7 Invalid type of reflection
8 Wrong classpath

Randoop

9 No testclass is specified
10 Invalid type of output cases
11 The value of alias-ration is out of bounds
12 No method list is specified
13 The tested method has missing arguments
14 Incorrect name of the tested method
15 Invalid symbols in name of output dir
16 File name contains invalid symbols

Hadoop

17 Carriage return at the end of URL
18 Old data dir after formatting namenode
19 Wrong host name of master node
20 Usage of http instead of hdfs in URL
21 The storage dir of namenode not readable
22 Missing the <property> tags
23 Info port is in use by other process
24 Missing port in the URL

HBase

25 Wrong port of the rootdir URL
26 Wrong host name of the rootdir URL
27 No permission of the data directory
28 HMaster port is occupied
29 Wrong port of ZooKeeper

Table II. CONFIGURATION ERRORS USED IN OUR EVALUATION.

this directory triggers the failure. Error #21 occurs if Hadoop
has no permission to access the storage directory. Error #23
is caused by a port being used by another application.

All HBase errors are from the website Stack Overflow
[22]. Some of the collected misconfigurations belong to the
same type. For instance, there exist multiple errors caused by
an incorrect host name.We use only one per type in this work.

B. Overall accuracy

We measure the accuracy of ConfDoctor by the rank of
the (unique) defective configuration option (i.e. option with
an incorrect value, the root cause of a failure) in a ranked list
of suspects. Rank 1 is the best possible result. We consider a
configuration option ci a suspect if its merged chop MCh(ci)
is not empty (or equivalently, by definitions in Section II-E,
if Corst(ci) > 0).

Column Corst in Figure 4 shows the main result of our
approach. Notation R/S means that the defective option has
rank R in a list with S suspects. Overall, ConfDoctor is highly
effective in diagnosing misconfigurations. It successfully pin-
points the root cause for 27 out of 29 errors. For 20 errors,
the defective option has rank 1. For other 7 errors, root causes
are ranked in the top four places.

In the case of JChord, ConfDoctor succeeds to pinpoint
the root cause with high accuracy for 7 errors. The rank of
the root cause for error #8 is 22. Code inspection shows that
the configuration option is used to set up the command line
for a child process. The value of the configuration option
directly flows into a system process. Our static analysis cannot
capture the dependency between command line arguments and
configuration options. Consequently, our tool is not able to

discover a connection between the defective option and the
exception and fails in diagnosing error #8.

For Randoop, ConfDoctor ranks the defective option as
the first for all cases except for error #15. For error #15
(ranked 4th), our investigation reveals that two of the three
configuration options ranked higher than #15 are related to
the defective option: they determine the subpath of a path
described by option #15. Consequently, we conclude that
ConfDoctor pinpoints the root cause of this error effectively.

The average ranking of Hadoop is 1.5. Among the 8 errors,
5 are ranked first. The rankings for errors #19, #21 and #23
are 2, 2 and 3, respectively.

The accuracy of our tool is slightly worse for HBase.
ConfDoctor diagnoses root causes of 4 out of 5 errors. Two
defective options are ranked as first, and other two receive
rank 3. For error #28, the defective option is not in the list of
suspects. A manual analysis shows that error #28 is caused
by an incorrect port of HMaster (a master server for HBase).
After the option value is read it is immediately forwarded to
Java library class without any processing. Since ConfDoctor
does not analyze the JDK library, the root cause of this failure
is not included in the list of suspects.

C. Comparison of accuracy of Cor versus Corst

In this section we contrast and analyse the accuracy of the
simple correlation degree Cor against the correlation degree
with stack order Corst.

Effectiveness of Cor. Recall that this metric is solely based
on the method distance involving option read points ORP and
frame execution points FEP. Contrary to Corst, it does not
consider the order of FEPs. Note that the ranking is based
the sum of the forward and backward correlation degrees
(Section II-E1).

The diagnosis results are shown in column Cor of Fig-
ure 4. For most of the errors, the ranking of the root cause
is in the top three of diagnosis results. The average ranks
of the root cause are 5.1, 2.8 and 1.6 for JChord, Randoop
and Hadoop respectively. The average rank of the root cause
for HBase is very high (11.8) since error #28 could not be
pinpointed.

As the model is based only on the method distance, it
is informative to consider the minimal ORP to FEP distance
dmin defined in Section II-E1. As shown in Figure 4, for all
errors of JChord and Randdop the value of dmin is 1 except
for error #8. As explained in Section IV-B, ConfDoctor cannot
successfully diagnose error #8. For Hadoop and HBase, the
value of dmin is larger, especially for error #27.

The primary reason for these values are that an error
stack trace contains only partial information and does not
contain the data on complete past execution traces. Hadoop
and HBase are complex distributed programs. A configuration
option value might be passed along many methods from being
read to being used. The method reading the incorrect value of
the configuration option might not appear in the stack traces
when an error occurs. For such cases, the value of dmin is
larger.



Id Rank of the root cause Statistics for rank 1 Variants of dependency analysis Conf-
Corst Cor dmin Key frame (Ctr, Ctr) (Ctr, NCtr) (NCtr, NCtr) Debugger

1 2/47 2/47 1 18/19 4/64 2/57 2/8 2/2
J 2 1/53 2/53 1 18/19 1/66 1/57 1/8 2/2
C 3 1/45 1/45 1 3/6 5/65 9/19 2/6 1/1
h 4 1/57 2/57 1 6/8 1/69 1/26 1/11 1/1
o 5 1/42 1/42 1 2/4 1/65 2/19 2/6 1/1
r 6 1/37 1/37 1 3/4 2/65 2/8 1/1 1/1
d 7 1/48 2/48 1 3/4 3/69 4/6 4/6 1/1

8 * 22/47 30/47 3 16/19 28/64 28/57 N N
Average 3.8/47 5.1/47 1.3 8.6/10.4 5.6/65.9 6.1/31.1 6.6/15.6 6.1/13.2

9 1/37 1/37 1 4/6 3/53 2/11 1/3 2/2
R 10 1/35 13/35 1 4/4 1/54 1/8 N N
a 11 1/47 2/47 1 7/8 3/55 1/20 1/5 2/3
n 12 1/39 1/39 1 3/5 4/54 1/7 1/3 1/1
d 13 1/41 1/41 1 3/11 4/54 1/12 1/3 1/1
o 14 1/41 1/41 1 3/13 4/54 1/13 1/5 1/1
o 15 4/43 2/43 1 4/6 17/53 4/18 4/7 2/4
p 16 1/38 1/38 1 3/5 1/54 1/2 1/1 1/1

Average 1.4/40.1 2.8/40.1 1.0 3.9/7.2 4.6/53.9 1.5/11.4 4.9 /10.8 4.9/8.8
17 1/7 1/7 1 6/8 1/32 1/32 1/2 1/1

H 18 1/11 1/11 1 3/8 1/29 1/3 1/1 1/1
a 19 2/7 2/7 2 4/9 9/30 9/21 2/3 N
d 20 1/18 2/18 2 6/9 1/36 1/31 1/1 N
o 21 2/16 2/16 2 6/8 2/38 2/2 2/2 N
o 22 1/11 1/11 1 5/7 1/34 1/29 1/5 1/1
p 23 3/6 3/6 2 4/9 16/31 16/20 2/5 N

24 1/11 1/11 1 5/7 1/34 1/29 1/5 1/1
Average 1.5/10.9 1.6/10.9 1.5 4.9/8.1 4.0/33 4.0/20.9 1.4/3 36.1/36.1

25 1/17 1/17 1 4/4 1/33 1/1 1/1 1/17
H 26 1/17 1/17 1 4/4 1/33 1/1 1/1 1/17
B 27 3/20 8/20 8 9/9 3/33 N N 16/20
a 28 N N - - 15/32 N N N
s 29 3/5 3/5 1 3/5 3/32 N N 3/5
e Average 10.8/30 11.8/30 2.2 4/4.4 4.6/32.6 28/55 28/55 13.4/30

Figure 4. Experimental results. The two columns under “Rank of the root cause” contain pairs R/S where R is the rank of the actual root cause in a
ranked list of suspects of size S (highest rank is 1). Column Corst shows the results obtained by the correlation degree with stack order (main output of
ConfDoctor). Column Cor shows the ranking by the simple correlation degree. Both metrics are defined in Section II-E. If the value of the correlation degree
is the same for a defective option and for some other options, we report the worst ranking for ConfDoctor and mark this by “*”. “N” indicates that the list
of suspects does not include the defective option. For computation of averages, each “N” is treated as half of the number of available configuration options
(Table I), assuming that a user would need to examine on average half of options to find the root cause.
Columns under “Statistics for rank 1” show the minimal ORP to FEP distance dmin(ci) and the key frame (Section II-E1) for the configuration option ci
ranked as first. In the column “key frame” we use notation K/F to indicate that the key frame value is K and the total length of the error stack trace is F .
A ”-” indicates that dmin and key frame are not defined.
Column “Variants of dependency analysis” shows the ranks of root causes obtained by Corst produced by variants of the dependence analysis types (see
text). It uses analogous notation as columns for Corst and for Cor.
Finally, column “ConfDebugger” reports results for our previous work ConfDebugger [6] using an identical notation as for Corst and Cor.

Effectiveness of Corst . ConfDoctor uses Corst to produce
its final ranking. This metric assigns a higher “importance”
to FEPs pointing to methods executed more recently before a
failure (or equivalently, to FEPs with smaller method distance
to the actual program site which rised an exception).

Data in column Corst in Figure 4 indicates that the
considering this factor improves precision of diagnosis results,
but the improvement varies among the applications. The
average rank of the root cause drops from 5.1 to 3.8 for
JChord, from 2.8 to 1.4 for Randoop, from 1.6 to 1.5 for
Hadoop, and from 11.8 to 10.8 for HBase. To understand these
differences, we analysed the usage and programming patterns

in regard to the configuration options in all four applications.

JChord and Randoop adopt a mechanism of centrally
initializing configuration options. Especially for Randoop, the
“randoop. main.GenTests.handle” method contains 45 ORPs.
Most configuration options are initialized in this method when
the program starts. The method appears in stack traces of all
8 errors. In this case, the most recent operation indicates the
configuration option last processed. Consequently, considering
the order of stack traces in Corst significantly improves the
precision of diagnosis results.

Hadoop and HBase initialize a configuration option only
when the module associated with the configuration option is



loaded. Initializations of configuration options are scattered
in the program and not concentrated in one or few methods.
When a misconfiguration occurs, it does not involve many
configuration options. For all errors, there are few configura-
tion options which have the same or higher correlation degree
with the root cause before applying the model. We conclude
that the order of the stack trace does not improve the precision
of the diagnosis results a lot.

The statistic key frame defined in Section II-E1 is also
shown in Figure 4. Notation K/F indicates that the key frame
value is K and the total length of the error stack trace is F .
Data shows that for the top ranked configuration option the
key frame is within the “upper” half of the error stack trace,
i.e. closer to the method where an exception is thrown than
to the “main”-method.

D. Impact of variants of the dependence analysis on accuracy

ConfDoctor mainly relies on static analysis technique
to diagnose the root cause of a configuration error. The
accuracy of diagnosis results depends on whether the program
slicing technique can precisely identify statements relevant
for error propagation. The type of dependence analyses has a
significant impact on the accuracy of diagnosis results.

In this section we evaluate the implementation choices
stated in Section III by comparing the precision of ConfDoctor
under different types of dependence analyses. We use a
tuple (F,B) to indicate a type of dependence analyses. If
the forward slicing considers control dependence, F is Ctr,
and NCtr otherwise. Analogously, if the backward slicing
considers control dependence, B is Ctr, and NCtr otherwise.
In this notation, the default type of dependence analyses used
in ConfDoctor is written as (NCtr, Ctr). Similarly, other three
dependence analyses are indicated as (Ctr, Ctr), (Ctr, NCtr)
and (NCtr, NCtr).

The diagnosis results under other dependence analyses are
shown in Figure 4. In terms of average rankings, ConfDoctor
achieves the most accurate results for JChord (3.8) and
Randoop (1.4) when using the default dependence type (NCtr,
Ctr). The accuracy of using the dependence type (NCtr, Ctr)
is similar to that of using the dependence type (NCtr, NCtr)
for Hadoop. For Hbase, using the dependence type (Ctr, Ctr)
obtains the most accurate results because it can diagnose the
root cause of error #28. But the root cause of error #28
ranks very low (15/32), which is not useful in the real world.
Overall, the comparison indicates ConfDoctor achieves more
accurate results when using the dependence type (NCtr, Ctr).

The explanation is that forward slicing considering control
dependence introduces too many statements which are only
indirectly affected by a configuration option. On the other
hand, for backward slicing, ignoring control dependence can
miss the execution information contained by a stack trace.
For instance, ConfDoctor totally fails to diagnose errors #10,
#27, and #29 when using the dependence type (NCtr, NCtr),
though it achieves a little more accurate results than using
(NCtr, Ctr) for Hadoop.
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Figure 5. Time of the forward slicing on 4 applications and the backward
slicing for each error (seconds)

E. Comparison with our previous work

ConfDebugger [6] is our preliminary work to diagnose
software misconfigurations by using static analysis. If one
FEP of a stack trace is contained in the forward slice of an
ORP of a configuration option, or an ORP of the configuration
option is included in the backward slice of an FEP of the stack
trace, ConfDebugger considers the configuration option as the
root cause candidate. Contrary to ConfDebugger, ConfDoctor
applies a systematic approach presented in Section II-E to
compute the dependency between one configuration option
and an error.

As shown in Figure 4 (Column ConfDebugger), ConfDe-
bugger achieves a similar accuracy for JChord. But for Ran-
doop, Hadoop, and HBase it fails in many cases. The reason
is that ConfDebugger does not consider incompleteness of
a stack trace. For many cases, the statements reached by
the ORP of a configuration option do not appear in stack
traces (see Section II-E) . In Hadoop and HBase, the depth
of method calls is relatively large. A stack trace misses some
executed program points when an error occurs. Consequently,
ConfDebugger has a very low success rate for these cases.

F. Time overhead of diagnosis

Our experiments were conducted on a laptop with Intel i7-
2760QM CPU (2.40GHz) and 8 GB physical memory, running
Windows 7. The time of the forward slicing on 4 applications
and the backward slicing for each error is shown in Figure 5.

The forward slicing does not consider control dependence
and takes is relatively fast. The maximum time is 357 seconds
for Hadoop. The forward slicing is a one-time effort per
program. The computed slices can be used for the diagnoses
of other errors.

The backward slicing considers control dependence and
needs more time. For an error, time for the backward slicing
varies on the size of the stack trace. The maximum time is
978 seconds for error #27. The time of computing correlation
degree is just several seconds. The total of diagnosing an error
is less than 20 minutes.



G. Discussion

1) Limitations: Our technique has several limitations.
First, we focus on a subset of configuration errors, where
the incorrect setting of an option causes a program to fail in
a deterministic way and produce a stack trace. Second, the
accuracy of our technique depends on the availability of a
stack trace. The lack of stack traces decreases the accuracy.
Third, our technique just provides suspects and cannot tell
a user why and how the configuration option is incorrect.
Besides, our approach cannot distinguish configuration errors
from bugs in the source code. ConfDoctor still produces
a ranking list for failures caused by a bug in the source
code, which can be misleading. Third, some misconfigurations
are caused by the incorrect setting of a combination of
multiple configuration options, our approach cannot pinpoint
the number of the root cause configuration options. Finally,
our implementation and experiments are restricted to Java. It
cannot cross components written by different languages.

2) Threats to validity: There are two threats to validity
in our evaluation. First, configuration errors for JChord and
Randoop are created by using ConfErr [13] as typographic
mistakes inserted into the value of a configuration option. Real
configuration errors collected from websites cover several
misconfiguration types such as numerical parameters and
system paths. Our errors might be not representative. Second,
subject application programs may not be representative either,
though the programs we used in the evaluation are created
by developers from different organizations and institutions.
Thus, we cannot affirm that the results can be generalized to
an arbitrary program.

V. RELATED WORK

Software configuration error diagnosis is recognized as an
important research problem and was investigated by many
groups from academia and industry. We classify the existing
works into two broad areas.

Program analysis. ConfDiagnoser [37] uses dynamic anal-
ysis technique to record run-time behavior of predicates
affected by configuration options. When these predicates
behave differently from the correct profiles, ConfDiagnoser
considers this option as a suspect. ConfAnalyzer [19] tracks
the flow of the labels by static data flow analysis, and treats
a configuration option as the root cause if its value flows
into the crashing point. ConfAid [2] applies dynamic infor-
mation flow analysis techniques to track tokens from specified
“configuration sources” and analyze dependencies between
the tokens and the error symptoms, pinpointing which tokens
are root causes. SPEX [32] analyze source code to infer
configuration option constraints and use these constraints to
diagnose software misconfigurations. Sherlog [34] uses static
analysis to infer the execution path and state of the program
in the run time to diagnose failures.

Our approach falls into this broad category (i.e. program
analysis). There are several differences to the approaches
above. First, many of them adopt the dynamic analysis tech-
nique. ConfDoctor employs only the static analysis technique
and does not need users to reproduce errors or execute the

instrumented program. Sherlog, and SPEX are similar to our
approach. However, Sherlog requires run-time log to infer
the execution path. ConfDoctor requires only a stack trace
of error. A stack trace is usually smaller in size and easier
to record. SPEX has a different objective, namely helping
developers improve the configuration design.

Second, ConfDoctor is fully automated, which is targeted
at end-users. After initial preprocessing of the source code,
a user needs to provide a stack trace of error as input and
receives an option ranking within minutes. It is not necessary
to re-execute the program nor to instrument it. While Sherlog
also refrains from dynamic analysis, it is targeted at product
support engineers and not end-users.

Non-program analysis. One category of well-known tools
[31][23] are the replay-based diagnosis techniques. They treat
the system as a black box to automatically run the system
with possible configurations values without damaging the
rest of the system until fixing the misconfiguration. This
class of techniques relies on having a working configuration.
Otherwise, it can not be applied. Besides, they require users
with more domain knowledge.

Another family of tools mine a large amount of configura-
tion data from different instances to infer rules about options,
and use these rules to identify software misconfigurations.
EnCore [36] and CODE [35] belong to this category of work.
Analogously, some tools such as Strider [15] or PeerPressure
[29] adopt statistical techniques to compare values of config-
uration options in a problematic system with those in other
systems to infer the root cause of a failure. These techniques
require substantial effort to collect the baseline data.

VI. CONCLUSION AND FUTURE WORK

The paper presents a practical technique to diagnose
software configuration errors. It first analyzes the program
in question to characterize statements affected by reading the
values of configuration options. In the case of a failure, the
stack trace is investigated in order to find a potential link
between the option read points and the program sites listed
in the stack trace. The suspicious configuration options are
reported after being ranked according to the “strength” of such
links.

Our experimental evaluation shows that the technique is
highly effective in diagnosing misconfigurations. Moreover,
it does not require users to reproduce errors. The only data
needed from a failed execution is the error stack trace. This
facilitates deploying our approach as a third-party service.

As we mentioned in the discussion, there exists limitations
in our approach. In future we will develop a strategy to cope
with cases that the value of a configuration option flows into
dependent libraries. We also will exploit to diagnose failures
caused by a combination of multiple configuration errors.
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