
ORPLocator: Identifying Read Points of
Configuration Options via Static Analysis

Zhen Dong∗, Artur Andrzejak∗, David Lo†, Diego Costa∗
∗Institute of Computer Science, Heidelberg University

†School of Information Systems, Singapore Management University

{zhen.dong, artur.andrzejak, diego.costa}@informatik.uni-heidelberg.de, davidlo@smu.edu.sg

Abstract—Configuration options are widely used for customiz-
ing the behavior and initial settings of software applications,
server processes, and operating systems. Their distinctive prop-
erty is that each option is processed, defined, and described
in different parts of a software project - namely in code, in
configuration file, and in documentation. This creates a challenge
for maintaining project consistency as it evolves. It also promotes
inconsistencies leading to misconfiguration issues in production
scenarios.

We propose an approach for detection of inconsistencies
between source code and documentation based on static analysis.
Our approach automatically identifies source code locations
where options are read, and for each such location retrieves the
name of the option. Inconsistencies are then detected by compar-
ing the results against the option names listed in documentation.

We evaluated our approach on multiple components of Apache
Hadoop, a complex framework with more than 800 options. Our
tool ORPLocator was able to successfully locate at least one
read point for 93% to 96% of documented options within four
Hadoop components. A comparison with a previous state-of-
the-art technique shows that our tool produces more accurate
results. Moreover, our evaluation has uncovered 4 previously
unknown, real-world inconsistencies between documented options
and source code.

Index Terms—Configuration options, Static analysis, Inconsis-
tency detection, Empirical study

I. INTRODUCTION

A. Motivation

Almost all modern non-trivial software systems provide

users with configuration options - essentially variables with

constant values, specified in user-editable text files. Such

options allow customization of behavior of individual pro-

gram instance and adaptation to the operating environment

without need to recompile the source code. The number of

configuration options in highly-configurable systems can reach

thousands. For instances, the current version of Mozilla Fire-

fox 43.0 has more than 2000 configuration options. Apache

Hadoop 2.7.1, a software framework studied in this work, has

more than 800 options available to users.

Maintaining large quantities of options is difficult, primarily

since each option must be correctly named and used in

three independent entities: the source code, the configuration

file(s), and the documentation. Especially in large and fast-

evolving projects this can lead to many inconsistencies. First,

documentation is updated separately from source code, and

often by other project participants. Second, developers can

fail to update the option names, values or options present in

the configuration files during program evolution. The conse-

quences can be erroneous names or descriptions of configura-

tion options in the documentation, incorrect usage of options

spanning multiple modules, or mistyped, missing or obsolete

options in configuration files.

Debugging associated failures can be tedious and mostly

based on trial-and-error. This can cause frustrating experiences

for users, e.g., if they cannot achieve a desired effect due to an

outdated documentation. Issue HDFS-8274 (see bug repository

of Hadoop-HDFS1) has been detected with our technique

and is a real case of this type. According to documentation,

users can specify the dump directory of NFS (Network File
System) files by setting the value of the option "nfs.dump.dir".

However, the value of this option has no effect on the system

behavior since the option name used in the source code

is "nfs.file.dump.dir". This inconsistency can cost hours of

debugging until the source code is inspected.

Moreover, issues of this type can be very costly as they are

likely to manifest in a production setting, e.g., after software

updates. This can have significant economic consequences:

Yin et al. states that 31% of root causes of high-severity issues

in a commercial storage company are caused by configuration

errors [24]. Another work by Rabkin and Katz confirm these

findings [18].

A straightforward approach for detecting inconsistencies

between documented options and the corresponding version

of source code is to check whether an option is used in the

source code. An indication of this fact is that at least one

code statement accesses the option value in the source code.

We call such a code statement an option read point (ORP).
To simplify, we do not consider whether the statement is dead

code. Given a list of ORPs together with corresponding option

names, we can compare it against the documentation in order

to detect the above-mentioned inconsistencies. We also can

check configuration files and detect incorrect option names

there in the same way.

In addition to inconsistency detection, locating option read

points is also of value for another two application cases:

automated misconfiguration diagnosis, and the extraction of

configuration option constraints.

1https://issues.apache.org/jira/browse/HDFS-8274

2016 IEEE 27th International Symposium on Software Reliability Engineering

Unrecognized Copyright Information

DOI 10.1109/ISSRE.2016.37

185

2016 IEEE 27th International Symposium on Software Reliability Engineering

2332-6549/16 $31.00 © 2016 European Union

DOI 10.1109/ISSRE.2016.37

185

A large body of research [16], [23], [26], [3], [25], [8],

[7] has attempted to automatically diagnose software config-

uration errors. The approaches here include tracing the data

flow of option values using program analysis techniques. A

prerequisite for almost all of these works is a list of (typically

manually specified) option read points. Thus, our approach

can further automate these approaches and save considerable

manual efforts.

Another branch of work [23], [25], [14], [15] attempts to

prevent configuration errors by telling users whether given

option values violate pre-defined rules or a set of constraints.

Also in this case the identification of option read points is a

requirement for using such techniques.

B. Locating ORPs and Inferring Option Names

A common way for developers to locate option read points

is to search the calls of the methods for reading options and

infer option names directly from the string parameters used

in a method call. This approach is not sufficient for com-

plex applications. In the application we studied, the calls of

option-reading methods usually take a variable as a parameter.

Detecting the name of an option requires to investigate many

methods or classes.

A real example is shown in Figure 1. Line 116 in the

class file CompositeGroupsMapping.java is an option read

point in Apache Hadoop, which takes the class variable D as

a parameter. The variable D is initialized by an expression

of combining a string constant and another class variable

C. Similarly, variable C is initialized by an expression of

combining variable B and a string constant. However, variable

B is declared in the super class GroupMappingServiceProvider
of class CompositeGroupsMapping. Again, variable B
is initialized by the variable A in a dedicated class for

storing option names or their prefixes. In this dedicated

class, variable A is initialized via a string. Finally, the

value of variable D, the option name, is obtained as

"hadoop.security.service.user.name.key.providers.combined".

This analysis spans 3 classes and 2 packages. Such coding

patterns are quite common in the applications which we

studied.

The most recent existing work, Confalyzer [17], extracts

configuration options by directly reading parameter values of

call sites of configuration APIs in the call graph. However,

Confalyzer is not sufficient to solve this problem because the

dynamic construction of option names like the example above

would lead to a low precision of the analysis.

C. Our Technique and ORPLocator

Addressing this issue, this work proposes a technique ca-

pable of automatically locating the option read points from

source code, and a prototype implementation called Option

Read Point Locator (ORPLocator).

ORPLocator is an automated static analysis technique for

locating option read points from source code. Given the name

of a class C for handling configuration options and the source

...
249: public static final String A =
250: "hadoop.security.service.user.name.key";

...

CommonConfigurationKeysPublic.java

...
34: public static final String B =

CommonConfigurationKeysPublic.A;
...

GroupMappingServiceProvider.java

...
47: public static final String C =

B + ".providers";
48: public static final String D =

C + ".combined";
...
public synchronized void

setConf(Configuration conf) {
...

116: this.combined = conf.getBoolean(D,true);
...
}
...

CompositeGroupMapping.java

Fig. 1. A real case of how an option is used in Hadoop 2.7.1. Variable names
are replaced by capitalized letters to improve readability.

code of a program, ORPLocator generates a map between

options and their read points.

The first step identifies all classes which extend the specified

class C. The second step selects methods reading option values

in such classes. Then all call sites of these methods are

identified. Finally, ORPLocator infers names of the options

read by the program at each call site and builds a map between

option names and the corresponding read points.

D. Contributions

Our work makes the following contributions:

• Technique. We present an accurate and automated

static analysis technique for locating option read points

in evolving, highly-configurable, modern software sys-

tems. The analysis computes dependence information as

needed.

• Implementation. We implement our technique in a pro-

totype, called ORPLocator, for Java software programs.

• Empirical Study. We conduct an empirical study on the

latest version (2.7.1) of Apache Hadoop, a widely popular

framework for distributed data processing with more than

1.3 million lines of source code and 800+ configuration

options. The result shows that our technique is effective

in identifying option read points in source code. Besides,

our experimental study discovers 4 previously unknown

inconsistencies between documented options and source

code.

186186

The rest of this paper is organized as follows. In Section II

we describe the assumptions and definitions and present our

technique. Section III discusses the implementation of OR-

PLocator. We present our empirical evaluation in Section IV.

Section V discusses related work. Finally, we conclude and

discuss future work in Section VI.

II. TECHNIQUE

In this section we first introduce the key-value configura-

tion model targeted by our technique. Then we present the

overview and the details of our technique.

A. Key-value Configuration Model

Most modern applications provide a mechanism allowing

users to change the behavior or features. The key-value con-

figuration is a common and widespread approach for users

to configure applications [17]. It is supported by the POSIX

system environment, the Java Properties API, and the Window

Registry.

The key-value configuration model can be illustrated by

the example shown in Figure 2. Configuration options are

designed as a set of key-value pairs and stored in a configu-

ration file. The keys are strings and the values have arbitrary

type. Each pair corresponds to an application attribute. Users

are able to control features of applications by setting attribute

values in the configuration file.

Meanwhile, application programs have a dedicated class for

managing these configuration options, called a configuration
class. The class takes responsibility of loading key-value pairs

in the configuration file to a map, and offers a set of methods

like getInt and getString, each of which takes one option name

as a parameter and returns the value of the option. We call

methods of reading option values in a configuration class as

get-methods.
Programs read option values by calling these get-methods.

In the example, conf.getString(keyName) returns the value of

the option with name key_1. This statement is called as an

option read point of the option named key_1.

B. Overview of the Technique

Our technique requires the source code of a program and

specifying its configuration class name. Its workflow is illus-

trated in Figure 3. The first step identifies subclasses of the

given configuration class. The second step selects get-methods

in the configuration classes. Then, all call sites of these get-

methods, i.e. option read points, are located in the source code.

Finally, names of the options read by each call site are inferred

and a map between these option names and their read points

is reported to users.

Our technique targets applications written in object oriented

languages such as Java, C++, and C#. We abstract the source

code as a set ψ of entities of classes, interfaces, and enums,

which are distributed in different class files. Each entity e
has a simple name and a fully-qualified name. The fully-

qualified name consists of the package name and the simple

name. An entity is retrieved by its fully-qualified name from

ψ. Statements in classes are denoted by a tuple <f , l> where

f represents the name of its class file; l represents the line

number of the statement in the class file.

C. Identifying Subclasses of the Configuration Class

Modern, non-trivial applications typically have a base con-

figuration class C dedicated to deal with configuration options.

Furthermore, different components or subprograms of the

application have its own configuration classes obtained by

extending or inheriting from C. In order to obtain all call

sites of get-methods in the program, we need to find all such

subclasses and store them in a set S.

D. Identifying the Get-Methods

Obviously, not all methods in a configuration class are get-

methods, and distinguishing get-methods from other methods

is necessary. Rabkin and Katz observe that methods for

accessing option values usually have a common characteristic:

their names obey a naming convention, starting with the same

prefix like get [17]. For particular types of option values,

method names which reveal the returning types are given such

as getBoolean, getInt, and so forth. This naming convention for

configuration APIs holds in many programs. In our prototype,

we adopt this convention and consider the methods in the

configuration class whose names start with prefix get as get-

methods.

The naming convention of methods accessing option values

may not hold in some programs. In these cases, we need to

manually check each method in the configuration class and

select get-methods.

E. Locating Call Sites of Get-Methods

Intuitively, one can obtain call sites of a method from a

specified class by directly searching the method name in the

source code. These search results are inaccurate and would

contain call sites of methods which have the same name from

different classes. In order to accurately locate call sites of get-

methods, we first identify instances of configuration classes

(Section II-E1) and then locate call sites of get-methods of

these instances (Section II-E2).

1) Identifying Instances of a Configuration Class: We iden-

tify instances of a configuration class by variables declared

with the type of the configuration class as well as scopes of

these variables. An instance is represented by a tuple <v, s>,
where v is the name of a variable and s is the scope of the

variable. All instance variables of configuration classes are

stored into a set V .

For any entity e ε ψ, we check each statement in e. If a

statement is a declaration statement and the declared type is

one of configuration classes in the set S, the declared variable

v is considered a variable of configuration classes.

The scope of a variable is determined based on three cases.

First, the scope of an instance variable or class variable is

identified as the largest block of the class. Second, if the

variable is a formal parameter of a method, its scope is the

corresponding method. Last, the variable is declared locally.

187187

...
key_1 := value_1
key_2 := value_2
key_3 := value_3
...

...
boolean LoadFile(String Path){...}
int getInt(String keyName){...}
String getString(String keyName){...}
...

...
Configuraion conf=new Configuration();
String keyName = "key_1";
String var_1=conf.getString(keyName);
...

The snippet of a configuration file The snippet of a configuration class The snippet of a class reading the value of an option

Fig. 2. An example scenario of the key-value configuration schema

Identifying conf.
subclasses

Selecting get-
methods

Locating call sites
of get-methods

Inferring names
of reading options

A conf. class A map of read points
and option names

Source code

Fig. 3. The workflow of our technique

We consider the smallest block which contains the declaration

statement of the variable as its scope.

2) Searching Call Sites of Get-Methods: Once the con-

figuration class instances and the corresponding scopes are

identified (Section II-E1), we locate call sites of get-methods

referenced by these variables in their scopes.

<methodCall> → <methodName>(<argumentList>)|
<reference><selectionOperator>

<methodName>(<argumentList>)
<selectionOperator> → <Operator>
<reference> → <expression>
<methodName> → <identifier>

...

Fig. 4. A segment of Backus-Naur Form (BNF) grammar specification for a
method call

The grammar of a method call is shown in Figure 4. Based

on this grammar, we classify method calls of get-methods into

three categories.

First, the <reference> in the grammar refers to an in-

stance variable of a configuration class. For any variable

<v, s> ε V , we search all statements in the scope s of the

variable and identify method calls which have the pattern

<v><selectionOperator><methodName>, where the method

name can be any one of the get-method names. These call

sites are stored in a set Ω.

Second, the <reference> refers to an instance returned by

another method call. We adopt a conservative solution to deal

with this case. All methods which return configuration class

types are identified. By these names, we search the whole

program and obtain call sites of these methods. If these call

sites are followed by <selectionOperator><methodName>,
where the method name can be any one of the get-method

names, we consider them as call sites of the get-methods and

add them to Ω.

Last, inside configuration class, the <reference> can be

implicit. For instance, the keyword this is used to reference

to the object typed as the current class in Java. Even some

get-methods are called without the reference. In order not to

miss such call sites, we identify all call sites of get-methods

in a configuration class and append them to the set Ω.

F. Inferring Option Names

This section describes how we infer the name of an option

read at a specific option read point. Based on this knowledge,

a map between option names and their read points can be

created.

In key-value configuration model, a specific option name

is passed to a get-method through its call site and this site

returns the value of this option. As stated in Section I-B, call

sites of get-methods usually take a variable storing an option

name as a parameter instead of a string constant. We have to

track down the value of the actual variable in a call site and

obtain the option name.

Our investigation shows that variables storing the option

names have characteristics which distinguish them from vari-

ables carrying other values. Variables with option names are

typically initialized when they are declared and not reassigned

by new values before being read. Values of such variables

can be obtained by searching their declaration statements and

scanning their initial values. This heuristic was used in several

past papers [17], [4]. Besides, their initial values are often not

string constants yet expressions combining a variable and a

string constant or other variables. In the example in Figure 1,

variable D is initialized by variable C and a string constant

".combined" and variable C is initialized by variable B and

a string constant ".providers". This usage creates convenience

for managing options for different components of a program.

For this complex usage of configuration options, we im-

plement two distinct approaches to track down which option

(identified by name) is read at a call site: identifying decla-

ration statements of variables (Section II-F1) and computing

variable values (Section II-F2).

1) Identifying Declaration Statements of Variables: The

usage of variables is represented by the grammar in Figure

5. As the grammar shows, variables can be accessed in two

ways.

Direct variable names. A variable which can be accessed

directly by its name could be a local variable, an instance

188188

<variableUse> → <variableName> | <reference>
<selectionOperator><variableName>

<selectionOperator> → <Operator>
<reference> → <expression>
<variableName> → <identifier>

...

Fig. 5. A segment of Backus-Naur Form (BNF) grammar specifying the use
of a variable

Algorithm 1 Finding the declaration statement of a variable

without a reference
Auxiliary functions:
searchDeclAsClassFields(var, o) : search the declaration state-

ment of variable var among the declaration statements in the

field of class o and superclasses of class o

Input: the statement of accessing a variable var and the current

class o ε ψ
Output: the declaration statement of the variable

locateDeclNoReference(var, o)
1. if(searchDeclInLocal (var))
2. return the matched statement

3. if(searchDeclAsParameters(var))
4. return null
5. if(searchDeclAsClassFields(var))
6. return the matched statement

7. if(searchDeclAsImportedVars(var)){
8. locate the class o′ where the variable is declared

9. if(o′ not in ψ)

10. return null
11. if(searchDeclAsClassFields(var, o′))
12. return the matched statement

13.}

variable, a class variable, or a parameter variable. We locate

variable’s declaration statements based on this type of the

declaration statement in the class.

First, the variable is considered as a local variable. We

search the declaration statement of this variable in the block

where the variable is used. If this is not successful, the search

is extended to the outer block until the largest block of the

method is reached.

If the declaration statement of the variable is not found in

the method, the variable is considered as an instance variable

or class variable. We search its declaration statement in the

class where the variable is used but outside of any methods

in the class. A variable in a class might come from its super

classes. If we fail to obtain the declaration statement in the

current class, we repeat the search on field members of its

super classes (if they are defined in the program, i.e. not from

the library or third-party packages).

If the declaration statement still is not located, the variable is

considered imported from other classes. The imported variable

can be used without specifying the class in which the variable

is defined. For instances, the keywords import static is used to

import a class variable in Java. Our technique also considers

this usage of a variable by matching the imported class

variables. If the variable is imported, the fully-qualified name

of the class where the variable is defined is extracted from the

full name of the imported variable. The entity of the class can

be selected by retrieving its name from ψ if the class is not

from the library or the third-party packages. Then we search

the declaration statement of the variable in this class.

The algorithm for extracting the declaration statement of a

variable without a reference is shown in Algorithm 1.

Variable names with references. An instance or class vari-

able can be accessed with a reference. The syntax of access-

ing those variables is like <reference><selectionOperator>
<variableName>. Our static analysis considers three cases of

this usage. First, the reference is keyword this referencing the

current instance or class. We search the declaration statement

of the variable in the field of the current class. Second,

the reference is a class name and the variable is a class

variable. We locate the class this reference represents, in

which the declaration statement of the variable is searched.

Last, the reference is a variable name and the variable is

a class member. For this case, the declaration statement of

the reference variable is first located and the data type of the

reference variable is obtained. If the data type is defined in the

application, we select the entity of this data type and search

the declaration statement of the class member in this entity.

We designed Algorithm 2 for both usage cases: direct vari-

able names and variable names with references. If a variable is

accessed directly by its name, we invoke Algorithm 1. For the

usage of a variable with a reference, the algorithm considers

the reference of the variable as an instance or class variable. If

the reference is other expression like the call site of a method,

null is returned. In the case where the type of the object of

the reference is not defined in the application, null is returned

too. Similarly, Algorithm 1 searches super classes of a class

for locating the declaration statement of an instance or class

variable.

2) Computing Values of Actual Parameters: As stated

above, in many cases parameters of an option read point are

initialized by an expression combining a variable and a string

constant or a variable expression. These expressions can be

modeled by the grammar shown in Figure 6.

<expression> → <S> | <S> + <S>
<S> → <variable> |<stringLiteral>

...

Fig. 6. A segment of Backus-Naur Form (BNF) grammar specification for
expressions of generating an option name

In order to infer which option name is used by an option

read point, we propose Algorithm 3. First, the algorithm

obtains operands and operators of an expression expr. There
are two cases for an operand in this model. If the operand

is a string literal, its value is stored into str. If the operand

is a variable, we call Algorithm 2 to locate the declaration

statement of the variable and obtain its initial expression expr′.

189189

Algorithm 2 Locating the declaration statement of a variable

Input: the statement with access to a variable var and the class

o ε ψ
Output: the declaration statement of the variable

locateDecl(var, o)
1.if(var without reference)
2. return locateDeclNoReference(var, o)
3. else{
4. reference ← getReference(var)
5. if(reference is a key word this)
6. return searchDeclAsClassFields(var, o)
7. o′ ←locateClassEntity(reference)
8. if(o′ is not null)
9. return searchDeclAsClassFields(var, o′)
10. declStat ← locateDeclNoReference(reference, o)
11. if(declStat is not null){
12. type ← getType(declStat)
13. o′ = locateClassEntity(type)
14. if(o′ is in ψ)
15. return searchDeclAsClassFields(var, o′)
16. }

16. return null
17. }

Then we recursively call Algorithm 3 to compute the value

of expr′ until the initial expression of a variable is a string

literal. If the values of all operands are successfully inferred,

the combination of values of all operands is returned. Note

that our technique does not consider expressions which do

not follow the model in Figure 6. Our evaluation shows that

this algorithm can infer values of most variables except when

the value of a variable is generated by another method.

According to our experience, most of the time, option names

are concatenated by using the operator "+" instead of calling

APIs for concatenating strings. Consequently, in Figure 6, we

only consider the operator "+".

In the end, a map is built between option names and the

corresponding option read points. By searching for option

names in the documentation we can obtain the map between

documented options and their read points in the program.

G. An Example

We use the example in Figure 1 to illustrate how our

technique infers the option names used by option read points.

Here a call site conf.getBoolean(D, true) is located at line 116

in the class file CompositeGroupMapping.java. The call site

takes variable D storing an option name as a parameter. The

goal of our technique is to infer the value of variable D.

Algorithm 3 takes variable D as input and considers it

as a variable instead of a string constant. Then Algorithm

2 is called to identify the declaration statement of variable

D. Since variable D is accessed directly by variable name,

Algorithm 1 is called to identify its statement at line 48 in

the class file CompositeGroupMapping.java and returns the

initial expression of the statement C + ".combined". Algorithm

Algorithm 3 Inferring values of actual parameters at a call

site
Input: an expression expr
Output: a string literal str

inferValue(expr)
1. optionName ← null
2. elements ←getElements(expr)
3. for (element element in elements){
4. if(element is an operand){

5. if(element is a string literal)

6. optionName← element
7. if(element is a variable){

8. currentClass ←getCurrentClass(expr)
9. declStat ←locateDecl(element, currentClass)
10. expr′ ← getInitializedExpression(declStat)
11. optionName← optionName + inferValue(expr′)
12. }

13. else
14. return null
15. }

16. else if(element is an operator "+")

17. continue:
18. else
19. return null
20. }

21. return optionName

3 parses the expression. The string constant ".combined" is

stored in a variable optionName. Then Algorithm 3 starts to

infer the value of variable C in the expression. Similarly,

Algorithm 3 obtains B + ".providers", the initial expression

of variable C. Then the string ".providers" and ".combined"

is combined to ".providers.combined" and stored in variable

optionName. Inference of the value of variable B is started.

When locating the declaration statement of variable B,

Algorithm 2 finds out that variable B is not defined in the

class CompositeGroupMapping. Then the algorithm identi-

fies the super class of class CompositeGroupMapping, i.e.

GroupMappingServiceProvider, where the declaration state-

ment of variable B is found and its initial expression Com-
monConfigurationKeysPublic.A is returned to Algorithm 3.

Algorithm 3 continues to infer the value of variable A. While

locating the declaration statement of variable A, Algorithm

2 finds variable A is accessed with a reference Common-
ConfigurationKeysPublic which is a class name. Algorithm

2 locates class CommonConfigurationKeysPublic, where the

declaration statement of variable A is found and its ini-

tial expression "hadoop.security.service.user.name.key" is re-

turned to Algorithm 3. Algorithm 3 finally outputs the value

of variable D, i.e., "hadoop.security.service.user.name.key.

providers.combined".

III. IMPLEMENTATION

We implemented our technique as a prototype, called Option

Read Points Locator (ORPLocator), which is restricted to

190190

TABLE I
SUBJECT PROGRAMS. COLUMN "#JAVA FILES" IS THE NUMBER OF JAVA
FILES. COLUMN "#LOC" IS THE NUMBER OF LINES OF CODE. THEY ARE

COUNTED BY CLOC [5]. COLUMN "#OPTIONS" IS THE NUMBER OF

DOCUMENTED OPTIONS FOR EACH MODULE.

Modules #Java Files #LOC #Options
Common (2.7.1) 1,495 294,898 127
HDFS (2.7.1) 1,380 400,353 216
MapReduce (2.7.1) 1,275 255,670 172
YARN (2.7.1) 1,612 354,901 197
Summary 5,762 1,305,822 712

applications in Java. The tool relies on the srcML library

[20]. The library computes an XML representation for source

code, where the markup tags identify elements of the abstract

syntax for the language. Currently srcML supports mainstream

programming languages such as Java, C++, C#, and C. Our

analysis targets applications in written multiple languages.

Consequently we choose srcML instead of Java analysis tools

such as JDT [1] and Spoon [2].

IV. EVALUATION

We conducted an empirical study to evaluate the effective-

ness and usefulness of ORPLocator and attempted to answer

the following research questions.

• RQ1: How effective is ORPLocator in locating option

read points and identifying option names?

• RQ2: How does ORPLocator’s effectiveness compare to

existing techniques?

• RQ3: What is the time cost of locating option read points

by ORPLocator?

A. Experimental Setup

1) Subject Programs: We evaluated ORPLocator on the

Apache Hadoop framework [9] for scalable and distributed

computing, which mainly consists of four modules (see Table

I). Aside from these 4 modules, Hadoop consists of more than

10 tools. In the evaluation, we do not consider these tools

because they have few configuration options.

There are considerations for choosing the latest version of

Hadoop (version 2.7.1) as the subject program. First, Hadoop

is currently widely used to store, analyze and access large

amount of data and has evolved into a complex ecosystem with

more than 100 related systems. The configuration mechanism

in Hadoop has matured through the evolution across a number

of versions from 0.14.1 to 2.7.1. Choosing Hadoop as the

subject program is representative. Second, Hadoop has an

abundance of configuration options.

2) Evaluation Procedure: The four modules are indepen-

dently implemented and each of them has a configuration file

which contains its own options. For each module its source

code (excluding the test code) is converted into the srcML

format by using the tool srcML [20]. Then we provide the

resulting srcML file as well as the name of the configuration

class as input to our tool ORPLocator. The ORPLocator

outputs a map between option names and their read points for

each module. For our evaluation, we also parse (automatically)

the XML-formatted documentation of Hadoop and retrieve all

option names listed there (we call there documented options).

B. RQ1: Effectiveness

We evaluate the effectiveness of ORPLocator by comput-

ing the number of identified options among the documented

options. We also check if a located option read point does

indeed reads an option value via manual inspection of the

source code. To reduce manual errors, two people performed

the manual check and resolved discrepancies.

1) Results: The overall results obtained by ORPLocator and

the numbers of documented options are shown in Table II. Col-

umn "Modules" lists modules of Hadoop we studied. Column

"get-Method Callsites" shows the number of call sites of get-

methods located by ORPLocator. In the part labeled "Found

by ORPLocator" column "#Options" shows the numbers of

detected options and column "#ORPs" the numbers of detected

read points, respectively. Table part "Documented Options"

reports options in documentation. Column "Total" shows the

number of options in documentation. Column "#Read" repre-

sents the number of documented options which are read in the

corresponding module. Note that not all documented option are

read by the modules, we further discuss unread options in Sec-

tion IV-B2. Finally, part "Documented and Found" shows how

many of the documented options are detected ("#Found") and

their percentage among all documented options ("%Found").

As shown in Table II, ORPLocator successfully locates

1861 read points yielding 1300 options (i.e., distinct option

names) in the source code of the 4 modules. Only a part of

these options (namely 658) are documented. Manual checking

shows that the remaining, not documented options are indeed

used to control the behavior of the application. As we see,

ConfLocator is also able to detect active options which are not

available to users. Such a comprehensive list of options can

support developers in removing, changing, and adding options

in the documentation.

Not every call site of a get-method is considered as an

option read point by ORPLocator. First, in a benign case,

such a get-method indeed does not retrieve a value of a

configuration option. For instance, the class JobConf in

MapReduce extends the configuration class, but has many get-

methods which are not used for fetching option values (such as

getKeepTaskFilesPattern(), getNumReduceTasks(), and so on.)

Second, such a get-method is responsible for loading

an option value but this was not recognized by our tool.

This is the case when the names of options loaded by

these call sites are generated by methods. Such names

cannot be inferred by our technique. For instance, in

the call site conf.get("hadoop.rpc.socket. factory.class." +
clazz.getSimpleName()), a part of the option name is generated

by another method. Our results show that luckily this type of

option read points is quite rare (Table III, Category 5).

On the other hand, ConfLocator could mistakenly interpret

some call sites of methods which are not configuration APIs

as option read points. To evaluate this, we manually checked

all read points of documented options in Hadoop Common but

191191

TABLE II
THE OVERALL RESULTS OF ORPLOCATOR: THE NUMBERS OF DETECTED OPTIONS AND THEIR ORPS, AND THE NUMBER OF DETECTED AND

DOCUMENTED OPTIONS. THE ORPS STANDS FOR OPTION READ POINTS.

Modules get-method Callsites
Found by ORPLocator Documented Options Documented and Found
#Options #ORPs Total #Read #Found %Found

Common 352 210 261 127 115 109 95%
HDFS 586 367 524 216 214 206 96%
MapReduce 909 423 631 172 169 162 96%
YARN 701 300 445 197 195 181 93%
Overall 2548 1300 1861 712 693 658 95%

TABLE III
CATEGORIZATION OF DOCUMENTED OPTIONS NOT DETECTED BY ORPLOCATOR.

Categories Description Common HDFS MapReduce Yarn Sum
1 Their read points are located in other modules 11 0 0 2 13
2 Option names are deprecated in the version 0 1 1 0 2
3 Option values are loaded by other configuration classes 4 0 0 0 4
4 Option names are mistakenly documented 1 1 2 0 4
5 Option names are determined in runtime 2 7 7 13 29
6 Call sites reading values of these options are missed 0 1 0 1 2
The number of un-located documented options for each module 18 10 10 16 54

TABLE IV
THE REAL WORLD BUGS DETECTED BY ORPLOCATOR ARE REPORTED TO DEVELOPERS AND FIXED. ALL THE BUG REPORTS CAN BE FOUND IN APACHE

HADOOP REPOSITORY.

Issue Type Status Documented option names Option names read in the source code

HADOOP-127042 Bug Resolved hadoop.work.around.non.threadsafe.getpwuid hadoop.workaround.non.threadsafe.getpwuid

MAPREDUCE-66053 Bug Resolved
mapreduce.map.skip.proc.count.autoincr mapreduce.map.skip.proc-count.auto-incr

mapreduce.reduce.skip.proc.count.autoincr mapreduce.reduce.skip.proc-count.auto-incr
HDFS-8274 Bug Resolved nfs.dump.dir nfs.file.dump.dir

could not find such false positives. Sure, our limited evaluation

does not fully exclude errors of this type, but it indicates that

they are unlikely.

2) Documented Options Not Found by ORPLocator : We

analyse the cases where option read poins are not located

by ORPLocator by breaking them down into 6 categories

depending on the cause of the omission (see Table III).

Each module in Hadoop has its own configuration file. An

option of a module might be inserted into configuration files

of other modules. Also a read point of an option in a module

may exist in other modules. Category 1 covers options of a

module whose read points are located in other modules. For

Hadoop Common, there are 11 documented options which are

unread by Common but read by HDFS or Yarn. Similarly, 2

of options in Yarn are only read by MapReduce.

Category 2 represents options which are deprecated in the

current version, but are still not removed from the list of docu-

mented options. There are two deprecated options: "nfs.allow.

insecure.ports" for HDFS and "mapreduce.job.counters.limit"

for MapReduce. The read points of their corresponding new

options are successfully located by ORPLocator.

Category 3 indicates options which are loaded by other

configuration classes instead of the main configuration class

of Hadoop. There are 4 options for Common loaded by the

Properties class in Java.

Category 4 covers options whose names are erroneously

documented, i.e. true bugs of Hadoop. We have reported these

bugs to developers as three issues (Table IV). In all cases,

these bugs have been confirmed and fixed.

Category 5 represents options whose names or part of

names are generated by another method. For instance,

in the call site conf.get(hadoop.rpc.socket.factory.class. +
clazz.getSimpleName()), the last part of the option name is

generated by the method getSimpleName(). ORPLocator failed

to infer names of these options based on their read points. This

is one of the limitations of ORPLocator.

Category 6 displays options which are read in the program

but whose read points were not located by ORPLocator. The

reason is that ORPLocator failed to identify call sites of get-

methods which read values of these options. We further discuss

it in Section IV-E.

Overall, there are only 54 options whose read points are

not located by ConfLocator, i.e., only 54 out of 712 options in

the documentation would need manual checking. We conclude

that our tool can significantly reduce the burden of maintaining

options consistency between documentation and code.

Summary of RQ1. The evaluation shows that ORPLocator

is effective in locating option read points. It successfully

detects 1861 read points of 1300 distinct options for 4 modules

we studied. For documented options, it locates at least one read

point for 109 out of 115 (95%) options in Common, 206 out

of 214 (96%) options in HDFS, 162 out of 169 (96%) options

in MapReduce, 181 out of 195 (93%) options in Yarn.

192192

0

200

400

Common HDFS MapReduce Yarn

ORPLocator Confalyzer

Fig. 7. The comparison on the number of documented options

TABLE V
THE NUMBER OF ENTRY POINTS FOR EACH MODULE.

Modules Common HDFS MapReduce Yarn
Entry points 22 25 8 13

C. RQ2: Comparison with a Previous Technique

This section compares our technique with a previous tech-

nique, called Confalyzer [17], which is recently used by SCIC

[4] to check software configuration inconsistencies. Within our

best knowledge, Confalyzer is the most precise technique of

locating option read points known in the literature.

Confalyzer, proposed by Rabkin and Katz [17], is a tool of

extracting program configuration options assuming the key-

value model. The core idea of Confalyzer is similar to ours

and considers methods starting with get in the configuration

class as APIs accessing option values. Then it identifies where

these methods are called in the program by building a call

graph and finds string parameters at these call sites, taking

these parameters as options and call sites as option read points.

Running Confalyzer. The tool is published on GitHub4.

For running it one needs to specify the entry points of analyzed

programs. Missing entry points would decrease accuracy of

detected results. To make an end-to-end comparison, we identi-

fied all possible entry points of each module by searching main

methods in the source code (see Table V). Confalyzer also

takes the Properties class in Java as a configuration class of

Hadoop, which is not considered by ORPLocator. The options

loaded by the Properties class are not considered.

Results. We collected all distinct options and their read

points reported by Confalyzer and selected options which

are documented (as well as corresponding read points). The

results are shown in Figures 7 and 8. We can see that

ORPLocator detects significantly more documented options

and corresponding option read points than Confalyzer.

ORPLocator is more accurate than Confalyzer primarily for

three reasons. First, ORPLocator detects option read points

by scanning the whole source code to match call sites of

configuration APIs. Contrary to this, Confalyzer identifies

option read points by constructing a call graph using static

analysis. Hadoop heavily uses reflection and this may cause

2https://issues.apache.org/jira/browse/HADOOP-12704
3https://issues.apache.org/jira/browse/MAPREDUCE-6605
4https://github.com/asrabkin/Confalyzer

0

200

400

Common HDFS MapReduce Yarn

ORPLocator Confalyzer

Fig. 8. The comparison on the number of read points of documented options

TABLE VI
THE ANALYSIS TIME AND FILE SIZES OF SRCML OUTPUT.

Modules Common HDFS MapReduce Yarn
File size (mb) 65.6 86.9 57.8 90.7
Time (min) 69.9 135.7 90.0 172.2

incompleteness in the inferred call graph [13], [16]. Some

methods containing option read points might not be included

in the call graph. Second, ORPLocator considers subclasses

of the base configuration class, which helps identify get-

methods added in the configuration class for sub programs.

Third, Confalyzer acquires option names by reading the value

of actual parameters at call sites if the actual parameters

are compile-time constants. Its accuracy depends on compiler

optimization. ORPLocator implements a simple parser to infer

values of actual parameters at call sites without this limitation.

Compared to Confalyzer, ORPLocator has another two

significant advantages. First, Confalyzer requires a complete

application program. Otherwise, the error due to missing

classes propagates during building a call graph. We encoun-

tered this error many times when running experiments. Second,

Confalyzer needs all entry points of a program. ORPLocator

has none of these issues.

Summary of RQ2. ORPLocator produces more accurate

results in locating option read points and does not require

entry points of analyzed programs.

D. RQ3: Time Cost

ORPLocator uses srcML output as the intermediate repre-

sentation, which is a high-level and expensive representation

compared to low-level representations such as SSA [6] or

LLVM [12]. The performance is a crucial issue for ORPLoca-

tor. This section discusses the time overhead of locating option

read points.

Our experiments were conducted on a laptop with Intel i7-

2760QM CPU (2.40GHz) and 8 GB physical memory, running

Windows 10. The analysis time and the size of srcML files

for each module are shown in Table VI.

Summary of RQ3. As we can see, our analysis needs 1

to 3 hours for each module. This is substantial yet acceptable

considering that the scale of each module is quite large, and

an analysis is performed infrequently.

193193

E. Discussion

1) Limitations: Our technique of locating option read

points has some limitations. First, as we explained in Sec-

tion II, ORPLocator focuses on configuration of the key-

value style, with methods accessing option values have names

starting with get, otherwise we have to manually select them.

Second, the accuracy of the identification of option read

points relies on the patterns how the get-methods are called

in the program. The implicit invocation of get-methods will

be missed by our technique, for instances, if get-methods are

called by a complex call chain. Instances of configuration

classes are stored in the complex data structures like a array

list. Last, our technique assumes most of the option names are

not generated by a method. Otherwise, the option names fail

to be inferred.

2) Threats to Validity: The primary threat to external

validity of this work concerns whether or not our results

will generalize. The access techniques to configuration op-

tion values varies in different programs. This includes the

construction of option names and the invocation patterns of

configuration APIs. This variation may affect effectiveness

of our technique. To mitigate this threat, we used Apache

Hadoop, a Java program with one of the largest number of

configuration options of the open-source projects. Moreover,

it is a program which is developed by a variety of developers

and widely used in both academy and industry. Although we

need to conduct more evaluations on different programs, we

believe that our results can generalize to other programs in

Java which uses key-value style configuration. In the future

work, we plan to instantiate our technique for other programs.

One internal validity threat regards the identification of

option read points. In our technique, all call sites of get-

methods whose parameters are successfully inferred are con-

sidered possible option read points. As stated in Section IV-B,

a manual inspection for Hadoop Common showed no errors

of this type.

Finally, the data of option read points produced by ORPLo-

cator and Confalyzer is all available online5.

V. RELATED WORK

The most closely related work falls into two categories:

inconsistency detection in the source code and techniques for

extracting configuration options.

A. Inconsistency Detection

Most of the work on identifying inconsistencies in programs

focuses on mismatches between documentation and source

code like our work. Lin et al. developed iComment [21] which

detects inconsistencies between source code and comments

and identifies bugs in the source code and bad comments

with these inconsistencies. Rubio-Gonzalez and Liblit [19]

use static analysis to track down the error codes returned by

system calls and to identify which of them are undocumented.

Behrang et al. [4] present a technique to detect inconsistencies

5https://goo.gl/7uVzYZ

among multiple layers of accessing configuration options. Like

ours, this work addresses detecting inconsistencies related to

configuration options. But we focus on different styles of

inconsistencies, namely manipulations of configuration options

in different layers from the user interface down to source code.

Our work targets detecting invalid configuration options in

documents which are not updated in time of the evolution

of source code or are mistakenly documented.

B. Extraction of Configuration Options

We are aware of several instances of prior work on extract-

ing configuration options from source code. The closest work

to ours is Confalyzer [17]. This work uses static analysis to

extract a list of configuration option from source code and

assisting options documentation. Although we address similar

issues, our techniques are significantly different. As stated in

Section IV-C, Confalyzer first marks configuration APIs in the

configuration classes. Then it identifies calls to these APIs in

the program by building a call graph and obtains option names

by reading values of parameters of these calls. Contrary to

this, our technique requires a smaller amount of dependency

information. The dependency information is computed on the

fly. The evaluation results show ORPLocator produces more

accurate results.

PrefFinder [10] proposed by Jin et al., uses static analy-

sis and dynamic analysis techniques to extract configuration

options and stores them in database for query and use. The

SCIC [4] exploits Confalyzer to implement the functionality

of extracting configuration options in the key-value model and

the tree-structured model. Differently from these, ORPLocator

is a new and technique for locating option read points without

relying on a call graph.

Besides, Zhou et al. [27] presents a prototype of extract-

ing configuration knowledge from build files via symbolic

analysis. Studies [22][11] analyze configuration variant and

space in configurable system software and detect defects due to

configuration inconsistency. All of them focus on compile-time

or building time configuration issues. Different from them, our

work focuses on configuration options at runtime.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a practical technique capable of

building a map between option names in documentation and

their read points in the source code. Compared to existing

techniques, our analysis computes dependency information

as needed without building a system dependency graph. The

evaluation shows that our technique is effective in locating

option read points and produces more accurate results than

previous state-of-the-art. Besides, our empirical study has dis-

covered multiple previously unknown inconsistencies between

documented options and source code in Apache Hadoop.

In the future, we plan to explore other configuration models,

making ORPLocator support majority of configuration models

used in today’s software systems and release it as a readily

used tool.

194194

REFERENCES

[1] Jdt. http://www.eclipse.org/jdt/.
[2] Spoon. http://spoon.gforge.inria.fr/.
[3] Mona Attariyan and Jason Flinn. Automating configuration trou-

bleshooting with dynamic information flow analysis. In Proceedings
of the 9th USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, pages 1–11, Berkeley, CA, USA, 2010.
USENIX Association.

[4] Farnaz Behrang, Myra B. Cohen, and Alessandro Orso. Users beware:
Preference inconsistencies ahead. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015,
pages 295–306, New York, NY, USA, 2015. ACM.

[5] CLOC. http://cloc.sourceforge.net/.
[6] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and

F. Kenneth Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Trans. Program. Lang. Syst.,
13(4):451–490, October 1991.

[7] Zhen Dong, Artur Andrzejak, and Kun Shao. Practical and accurate
pinpointing of configuration errors using static analysis. In Software
Maintenance and Evolution (ICSME), 2015 IEEE International Confer-
ence on, pages 171–180, Sept 2015.

[8] Zhen Dong, Mohammadreza Ghanavati, and Artur Andrzejak. Auto-
mated diagnosis of software misconfigurations based on static analysis.
In IWPD 2013 at ISSRE, pages 162–168, 2013.

[9] Hadoop. http://hadoop.apache.org/.
[10] Dongpu Jin, Myra B. Cohen, Xiao Qu, and Brian Robinson. Preffinder:

Getting the right preference in configurable software systems. In Pro-
ceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering, ASE ’14, pages 151–162, New York, NY, USA,
2014. ACM.

[11] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian
Erdweg, Klaus Ostermann, and Thorsten Berger. Variability-aware
parsing in the presence of lexical macros and conditional compilation.
In Proceedings of the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and Applications, OOPSLA
’11, pages 805–824, New York, NY, USA, 2011. ACM.

[12] Chris Lattner and Vikram Adve. Llvm: A compilation framework
for lifelong program analysis & transformation. In Proceedings of
the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization, CGO ’04, pages 75–,
Washington, DC, USA, 2004. IEEE Computer Society.

[13] Benjamin Livshits, John Whaley, and Monica S. Lam. Reflection
analysis for java. In Proceedings of the Third Asian Conference on
Programming Languages and Systems, APLAS’05, pages 139–160,
Berlin, Heidelberg, 2005. Springer-Verlag.

[14] S. Nadi, T. Berger, C. Kastner, and K. Czarnecki. Where do configu-
ration constraints stem from? an extraction approach and an empirical
study. Software Engineering, IEEE Transactions on, 41(8):820–841,
Aug 2015.

[15] Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czar-
necki. Mining configuration constraints: Static analyses and empirical

results. In Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, pages 140–151, New York, NY, USA, 2014.
ACM.

[16] Ariel Rabkin and Randy Katz. Precomputing possible configuration error
diagnoses. In Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’11, pages 193–
202, Washington, DC, USA, 2011. IEEE Computer Society.

[17] Ariel Rabkin and Randy Katz. Static extraction of program configuration
options. In Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, pages 131–140, 2011.

[18] Ariel Rabkin and Randy Katz. How hadoop clusters break. IEEE Softw.,
30(4):88–94, July 2013.

[19] Cindy Rubio-González and Ben Liblit. Expect the unexpected: Error
code mismatches between documentation and the real world. In
Proceedings of the 9th ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, PASTE ’10, pages 73–80,
New York, NY, USA, 2010. ACM.

[20] srcML. http://www.srcml.org/index.html.
[21] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. /*icomment:

Bugs or bad comments?*/. In Proceedings of Twenty-first ACM SIGOPS
Symposium on Operating Systems Principles, SOSP ’07, pages 145–158,
New York, NY, USA, 2007. ACM.

[22] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang
Schröder-Preikschat. Feature consistency in compile-time-configurable
system software: Facing the linux 10,000 feature problem. In Proceed-
ings of the Sixth Conference on Computer Systems, EuroSys ’11, pages
47–60, New York, NY, USA, 2011. ACM.

[23] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng,
Ding Yuan, Yuanyuan Zhou, and Shankar Pasupathy. Do not blame
users for misconfigurations. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, SOSP ’13, pages 244–259,
2013.

[24] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N.
Bairavasundaram, and Shankar Pasupathy. An empirical study on con-
figuration errors in commercial and open source systems. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles,
SOSP ’11, pages 159–172, 2011.

[25] Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu
Ge, Vasanth Bala, Tianyin Xu, and Yuanyuan Zhou. Encore: Exploiting
system environment and correlation information for misconfiguration
detection. In Proceedings of the 19th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
ASPLOS ’14, pages 687–700, 2014.

[26] Sai Zhang and Michael D. Ernst. Automated diagnosis of software con-
figuration errors. In Proceedings of the 34th International Conference
on Software Engineering, San Francisco, CA, USA, May 22–24, 2013.

[27] Shurui Zhou, Jafar Al-Kofahi, Tien N. Nguyen, Christian Kästner, and
Sarah Nadi. Extracting configuration knowledge from build files with
symbolic analysis. In Proceedings of the Third International Workshop
on Release Engineering, RELENG ’15, pages 20–23, Piscataway, NJ,
USA, 2015. IEEE Press.

195195

