
Automated Diagnosis of Software Misconfigurations
Based on Static Analysis

Zhen Dong, Mohammadreza Ghanavati, Artur Andrzejak
Institute of Computer Science

Heidelberg University, Germany
{zhen.dong, mohammadreza.ghanavati, artur.andrzejak}@informatik.uni-heidelberg.de

Abstract—Software configuration settings are an effective way
to customize applications. However, inconsistencies or mistakes
in option values can result in a system crash and need huge
time and effort to diagnose. We present a technique to identify
the root causes of configuration errors. It uses static program
analysis to link the misconfiguration of an application to a
specific configuration option. Our technique has two prominent
characteristics compared to existing approaches: it relies only on
static analysis, and it does not need profiles of the application
with correct configuration.

Based on the proposed techniques, we developed a tool called
ConfDebugger. We evaluated its effectiveness on 8 configuration
errors in the Java program JChord. ConfDebugger successfully
diagnosed 7 out of 8 errors. For 5 of them, root cause was exactly
pinpointed without a false positive, and in total, the average
number of false positives was only 0.5. This is better than two
state-of-the-art methods, with average numbers of false positives
of 1.7 and 5.7, respectively.

Index Terms—Configuration debugging, static program anal-
ysis, thin slicing, failure-inducing chop

I. INTRODUCTION

Configuration settings provide a proven and effective way
to customize applications for different user requirements.
Growing functionality and size of today’s software leads to
a larger number of configuration options, and more complex
dependency patterns between them. This in turn increases the
likelihood of introducing a misconfiguration which can lead to
“hard” crashing errors or (possibly gradual) performance prob-
lems. Debugging of such errors is an expensive and tedious
work, as they frequently manifest in a deployment scenario.
For example, a misconfiguration in the user authentication
system caused a breakdown of some essential Google services
(e.g., Gmail and Drive) for two hours in April 2013, see [2].

A misconfiguration can assume many forms, including mis-
taken parameter values, inconsistencies between option values,
and illegal parameters. According to Yin et al. [12], mistaken
parameter values account for 70-85% of all misconfigurations
(investigation on data on five significant applications), and 40-
50% of them result from invalid values. A significant portion
of configuration errors can lead to a system crash. We focus
in this work on this type of defects.

Most execution environments save a stack trace once a
crashing failure has occurred. Our basic idea is to analyze
dependencies between each configuration option and the stack
trace to diagnose misconfigurations. If one of the code loca-
tions referred by the stack trace has a direct data or control

dependency to a configuration option, the latter is quite likely
to be the root cause of the failure.

Our approach uses a static analysis technique to identify
program statements affected by each configuration option. Let
A be as set of such statements (for a specific configuration
option). When a user encounters one configuration error, she
first needs to extract statement locations from the stack trace.
Our approach subsequently identifies statements affecting the
stack trace, and records them in a set B. If there is an intersec-
tion between sets A and B, the corresponding configuration
options are listed in a set of suspects.

Since static analysis involves all possible execution paths,
too many configuration options will be treated as suspicions.
To address this problem, we adopt filtering technique to
narrow down the range of the root causes of a configuration
error. After this filtering, we report the set of suspicious
configuration options to the user.

Our approach has several advantages compared to the
previous solutions to this problem [1], [5], [9], [11], [15].
Firstly, it only needs the configuration options, the stack trace
of the failure, and the bytecode of Java program. User does
not need to provide any additional information. This is more
efficient compared to delta debugging [13], information flow
analysis [1] and dynamic slicing [16]. Secondly, differently
to the recent approaches [5] and [15] which combine static
and dynamic analysis, our approach only uses static analysis.
Finally, it does not require any profiles of the application
executed with correct configuration like the method in [15].

In summary, this paper makes the following contributions.
• Technique. We propose a new lightweight approach to

locate the root causes of configuration errors.It is able to
diagnose the misconfiguration using only static analysis
of code (Section II).

• Implementation. We implement the proposed technique
and develop a tool called ConfDebugger (Section III).

• Evaluation. We evaluate our approach on 8 configuration
errors in Java program JChord [4]. The results in Sec-
tion IV show that it features high precisionin detecting
of the root cause of a misconfiguration (Section IV).

The rest of the paper is organized as follows. The approach is
described in Section II and its implementation in Section III.
The results of the experiments are discussed in Section IV.
Related work is presented in Section V and conclusions in
Section VI.



Program

Configuration
options

Failure
manifestation site

Stack trace
Analysis

Propagation
Analysis

Forward
Slices

Backward
Slices

Filtering

Filtering

Intersection
Diagnosis
Analysis

Error
report

Figure 1. Workflow of our diagnosis technique

II. DESCRIPTION OF THE APPROACH

This section describes in detail the proposed approach for
diagnosing configuration errors, starting with some definitions.

A software configuration is comprised of a set of config-
uration options (also called configuration parameters). Each
option is a read-only constant variable which modifies certain
aspects of program behavior.

A typical way to specify the option values is a key-value
style configuration. Here the keys are strings, each naming the
configuration parameter. The corresponding value (commonly,
also a string) specifies the value of this parameter.

For example, in the Chord/JChord framework for
Java bytecode analysis (Section IV-A), a file named
chord.properties holds all configuration settings
(in a so-called Java Properties format). Each line in this
file corresponds to one configuration option. For Chord,
one of them specifies the main class of the program to
be analysed as chord.main.class=foo.Main. Here
chord.main.class is the key (option name) and
foo.Main is its value.

This key-value configuration schema is supported by the
POSIX system environment, Java Properties and Windows
Registry, and used in a range of open source projects. It is also
assumed in many related works on configuration debugging,
see e.g. [5].

A. Overview

An overview of our technique is given in Algorithm 1
and additionally illustrated in Figure 1. It uses as input a
source code and bytecode of a Java program, its particular
set of configuration options and a failure stack trace. Firstly,
the affected statements of the program are identified by each
configuration option by performing a propagation analysis
(Section II-B). We call these sets of statements the forward
sets.

Our technique conducts then failure stack trace analysis
to identify the program statements which affect stack trace
directly (Section II-C). We call such sets of statements the

Algorithm 1 Steps of the proposed approach
Step 1: Compute Forward slices for each of n configuration
options:

FSlicei = ForwardSlice (app, confi), i ∈ {1, ..., n},

FSlice =

n∑
i=1

FSlicei

Step 2: Extract Error Set Eset from the stack trace
Step 3: Compute backward slices for each element e of Eset:

BSlicej = BackwardSlice (app, e), j ∈ {1, ...,m}

BSlice =

m∑
i=1

BSlicei

Step 4: Filter FSlice and BSlice using breadth-first search
distance algorithm
Step 5: Compute the intersection of forward and backward
slices:

IS = FSlice ∩BSlice

Step 6: Get list of suspects by analyzing the intersection IS

backward sets. After filtering the unnecessary statements from
forward and backward sets (Section II-D), we compute the
intersection of both sets (Section II-E). Finally, we identify
the root cause of the misconfiguration based on the statements
in the intersection and then report a list of suspicious config-
uration options to users (Section II-F).

B. Configuration Propagation Analysis

The basic technique for analyzing propagation of config-
uration option values is program slicing [10]. For a given
statement s of a program (a seed statement), the forward slice
of s is a subset of the program statements whose execution
may be affected by statement s.

Parts of source code whose execution is potentially affected
by a configuration option can be identified by using the



forward slices. To this end we first need to identify the entry
point of a configuration option value, i.e. a part of source code
which reads in a particular option value during the execution.
This entry point is used as a seed statement for computing a
forward slice. To identify the entry point of a configuration
option, a simple way is searching the statements which read
the value of a configuration option by using a call graph of a
program.

The traditional full slicing [3] systematically identifies parts
of the program which can affect or are affected by a specific
statement. However, the slices created in this way are usually
too large.

To address this limitation, we use thin slicing [6]. This
technique yields the subset of statements which are directly
affected by a configuration option. Essentially, it excludes
statements involving base pointers and control flow depen-
dencies. This can significantly decrease the size of the slice.

C. Stack Trace Analysis

Java applications (as well as many operating systems)
commonly produce a stack trace when a crash happens, not
just a simple error message. In Java, the stack trace lists a
hierarchy of nested methods called up to the point of failure
(including the code location of each call). The top line of the
stack trace is the point where an exception is raised.

However, an option misconfiguration can affect any of the
methods listed by the stack trace. Consequently, we analyze all
lines of the stack trace to find statements relevant to the failure
in the program. Failure stack trace analysis is comprised of the
preprocessing of the stack trace and the stack trace analysis
by backward slicing.

1) Preprocessing of the stacktrace: In Java programs, de-
velopers typically handle exceptions with a dedicated class.
This leads to a phenomenon that stack traces from different
failures have the same first line. This line corresponds to an
exception and does not help to identify root cause of errors.

In our approach, we check the first line of the stack trace.
If this points to an exception-handling statement, we ignore
this line. Similarly, we do not consider the bottom line of the
stack trace which is the entry point to the main method of the
program.

In addition, some of the methods can be called more than
once during the execution of an application (see Figure 2).
Consequently, if multiple entries of the stack trace point to the
same code location, only one of these entries is considered.

Note that the preprocessing of the stack trace is not au-
tomated in our current prototype and needs to be completed
manually. The problem is that it is very difficult to identify
the exception-handling statements (among those pointed by
the stack trace). Nevertheless, we will attempt to automatize
this step as a part of the future work.

After preprocessing, we map the remaining stack trace
entries to code locations (indicated by pairs (className,
lineNumber)). The set of these locations is called the Error
Set.

Exception in thread "main" java.lang.NoClassDefFoundError:
notexist
...
...

at chord.project...runTask(ClassicProject.java:393)
at chord.project...runTask(ClassicProject.java:390)
at chord.project...runTask(ClassicProject.java:390)
at chord.project...runTask(ClassicProject.java:414)
at chord.analyses...run(DataraceAnalysis.java:90)
at chord.project...runTask(ClassicProject.java:393)
at chord.project...runTask(ClassicProject.java:414)
...
...

Figure 2. A fragment of the stack trace for failure #1 from Table I

2) Stack trace analysis by backward slicing: In this step,
we use each of the statements from the Error Set as the seed
statement to compute the backward slice. The backward slice
is a subset of statements that may affect the value of any
variables at the seed statement [14]. Also in this case we use
thin slicing [6] instead of traditional full slicing [3].

Contrary to forward slicing, backward slicing not only
considers data dependencies but also control dependencies.
Using also control dependencies has two advantages. Firstly,
stack trace is a sequence of method calls, which itself is a
reflection of control flow when a crash occurs. Considering
control dependencies can significantly help to trace the root
cause of the error.

Secondly, statements which are indicated by stack trace
are method calls. Many of them do not directly involve data
dependencies. If the control dependencies are not considered,
the backward slice would only contain the seed statement.

D. Filtering

Thin slicing dramatically reduces the slice size compared to
the traditional full slicing. However, the size of slices in the
configuration propagation and the failure stack trace analysis
are still large, especially when the control dependencies are
considered in the failure stack trace analysis. In face of this
fact we further prune slices and remove statements which are
less relevant to the seed statement.

In thin slicing, statements “closer” to the seed statement are
more likely to be relevant to seed’s behavior. Consequently,
for a statement s we measure its breadth-first search distance
from the seed statement in the dependence graph [6]. Our
filtering works then as follows: if this distance exceeds a
certain threshold, it is excluded from the slice.

E. Failure-inducing Chop

The basic idea used in our approach is that a configuration
option is more likely to be the root cause of the miscon-
figuration if there exists an intersection between its forward
slice (Section II-B) and the backward slice of the stack trace
(Section II-C). We call this intersection as the failure-inducing
Chop (FChop).

In Step 5 of Algorithm 1 we compute the statements in
the intersection FChop of the forward slice and the backward
slice.



F. Configuration Diagnosis Analysis

In this section, we analyze the statements in the FChop to
identify the root cause of the error.

Three cases are taken into account. Firstly, statements in
the FChop only correspond to one configuration option. We
call this case a single suspect. Secondly, statements in the
FChop correspond to multiple configuration options, called
multiple suspects. Lastly, FChop is empty. We call this case
as no suspect. In the following we explain each of these three
cases in detail.

1) Single Suspect: This situation is the optimal outcome
for our technique. The configuration option in the FChop is
reported to the user as the root cause of the misconfiguration.

2) Multiple Suspects: If the statements in the FChop link to
more than one configuration option, we use filtering to narrow
down the range of the suspicious configuration options by
adopting the following strategy.

In configuration propagation analysis, if the forward slice
of a configuration option contains any statement in the Error
Set, it means that there exist dependencies between the con-
figuration option and the error. We say in this case that the
configuration option can reach the error.

On the other hand, if an entry statement of a configuration
option is contained in the backward slice of the stack trace, it
means that the error can reach the configuration option in the
stack trace analysis.

If a configuration option and the stack trace can reach each
other, this configuration option has a higher probability to be
the root cause of the error than other configuration options.
We report these configuration options as the root causes of
the misconfiguration.

3) No Suspect: For the situation that the FChop is empty,
we remedy it by relaxing the conditions of making the failure-
inducing chop. Firstly, the threshold on breadth-first search
distance (II-D) is increased until the FChop is not empty. If the
FChop is still empty, we use an approximate failure-inducing
chop (AFChop) as follows.

During computing intersection of forward and backward
slices, if the source line numbers of two statements in the
same class file are close to each other, not just exactly equal,
we consider the two statements as the same statement and put
them into the AFChop. The mathematical description of the
AFChop is as follows:

Defining C as class name and L as source code line number,
statement Sf (Cf , Lf ) is in the forward slice of configuration
options and statement Sb(Cb, Lb) is in the backward slice of
the stack trace. Then Sfand Sb belong to the AFChop, if the
following three conditions are satisfied:

1) Cf = Cb,
2) Lb − Lf ≤ ε, where ε is a predefined threshold
3) Sf and Sb are in the same method.

We increase ε until AFChop is not empty. Then, the corre-
sponding configuration options in AFChop will be reported to
the user.

G. Discussion

Why are forward and backward slicing combined? The
forward slice of an entry point of an erroneous configuration
option should reach the failure stack trace. If this is the case,
this configuration option can be assumed to be the root cause
of this defect (this idea is used in paper [5]). Similarly, an entry
point of an erroneous configuration option which is reached
by the backward slice of the failure stack trace should be the
root cause of the error. So why does it still make sense to
combine both techniques?

The answer is that by using both types of slicing we
can increase the specificity of our approach. Static analysis
involves all possible executable paths (instead of only executed
paths as in dynamic analysis). Consequently, entry points of
multiple configuration options can reach the failure stack trace
in the forward slice analysis. On the other hand, the backward
slice of the failure stack trace can also reach the entry points
of multiple configuration options. Therefore, we combine both
types of slices to narrow down the range of the suspicious
configuration options.
How can FChop be empty? Due to simplifying assumptions
and implementation constraints, the static analysis tool used
in this work does not give all the statements affected by a
seed statement. Consequently, it can ignore statements which
are logically related to the seed statement. This leads to an
empty intersection between the forward slice of configuration
options and backward slice of the failure stack trace. We will
further discuss it in our evaluation (Section IV).

III. IMPLEMENTATION

We implemented a tool, called ConfDebugger, on top of the
WALA [8]. WALA is a static analyzer tool developed by IBM.
It analyzes Java bytecode and locates the entry statements
based on the list of configuration options. Then it computes
the subsets of the statements affected by each configuration
option and the statements affecting the failure stack trace.
After that, our prototype computes and assigns the breadth-
first search distance to the seed statement for every statement,
filters statements, makes the FChop (AFChop), and performs
the analysis on the FChop (AFChop).

Our prototype does not analyze the standard JDK library and
all libraries which subject program depends on. We believe it
makes sense, since the configuration settings of an application
almost never affect the behaviors of its dependent libraries.

To achieve scalability, we do not consider data dependencies
involving heap. Considering such dependencies would incur a
very significant additional memory overhead by the WALA
tool.

Currently we cannot exactly say whether using data de-
pendencies involving heap would improve the results or not.
However, at least in case of the error #6 (Section II-F2) an
improvement is likely. If we would be able to use heap-related
dependencies, then he root cause of this error could be possibly
determined more easily - using FChop instead of AFChop.



Table I
THE 8 CRASHING CONFIGURATION ERRORS USED IN THE EVALUATION

Error ID Crashing errors in JChord
1 No main class is specified
2 No main method in the specified class
3 Running a nonexistent analysis
4 Invalid context-sensitive analysis name
5 Printing nonexistent relations
6 Disassembling nonexistent classes
7 Invalid reflection kind
8 Wrong classpath

IV. EVALUATION

In this section, we evaluate the effectiveness of our tech-
nique by the following aspects:

• the precision of the analysis results
• the time effort of error diagnosis
• comparison with previous configuration error diagnosis

techniques.
Besides, we evaluate the impact of the filtering (by breadth-
first search distance) on the precision of analysis.

A. Experimental Environment and Configuration Errors

We have selected JChord (version 2.1) [4] as our application
for experimenting. JChord is a program analysis platform that
enables users to design, implement, and evaluate static and
dynamic program analysis for Java bytecode. JChord is used
as a subject program in multiple papers on configuration errors
diagnosis. By selecting this application we are able to easily
compare analysis results against those stated in the related
work.

We considered 9 crashing configuration errors which were
previously used to evaluate the ConfAnalyzer [5] and the
ConfDiagnoser [15] tools. Before diagnosing, we attempted
to reproduce all 9 of these crashing errors. However, one of
them could not be reproduced because of different versions of
JChord. We thus use the remaining 8 errors to evaluate our
technique (see Table I).

Our experiments were conducted on a dual core 2.00 GHz
Intel PC with 4 GB physical memory, running Windows 7.

B. Results

1) Precision of diagnosing configuration errors: As shown
in Table II, ConfDebugger is highly effective in pinpointing
the root cause of software configuration errors. It successfully
diagnoses all configuration errors except one. The success
ratio is 87.5%. For 5 of them, it exactly gives the root cause
without any false positives. Here a false positive is a correct
configuration option which is reported as a suspicious one.
The remaining 2 errors have 1 false positive each. The average
number of false positives was 0.5.

For errors #3, #5, #7, there is only one statement in the
FChop. It was the entry statement of the configuration option
which is responsible for the error. For errors #1, #2, there are
25 statements which correspond to 13 configuration options in
the FChop. After analysis (see Section II-F), two configuration
options remain in the output list of suspicious configuration

71 String[] printClasses =
Utils.toArray(Config.printClasses);

72 if (printClasses.length > 0) {
73 for (String className : printClasses)
74 program.printClass(className);
75 }

Figure 3. Exception of the JCord related to error #6

Table III
EXECUTION TIME OF VARIOUS TASKS OF CONFDEBUGGER (SECONDS)

Error ID Forward Backward AnalysisSlicing Slicing
1 21 35 2
2 21 35 2
3 21 18 < 1
4 21 21 < 1
5 21 14 < 1
6 21 12 2
7 21 13 < 1
8 21 35 < 1

options. The FChop of error #4 contains 4 statements corre-
sponding to 3 configuration options. Using multiple suspects
strategy (see Section II-F2), our approach identifies one of
them as the root cause of the error.

For error #6, the FChop is empty. The reason is that
the value of this configuration option directly flows into a
container after it enters the program (see Figure 3). WALA
analyses that the configuration option Config.printClasses does
not affect the lines 72, 73 and 74. It shows that it is not
effectively propagated. On the other hand, the backward slice
of the stack trace can not reach line 71. Consequently, the
FChop can not diagnose this error.

After relaxing the conditions and using AFChop (see Sec-
tion II-F3), lines 71 and 72 are only included in AFChop
when the threshold ε is set to 1. After this adjustment, the
configuration option chord.print.classes is reported by our
approach as the root cause of the configuration error.

ConfDebugger cannot diagnose error #8. The reason is that
this error involves the system calls and does not produce any
information related to the root cause of the misconfiguration
(chord.class.path) in the stack trace. The stack trace gener-
ated for this error is the same as for error #1. The current
implementation of ConfDebugger cannot handle this type of
errors. This could be a good point for further extensions of
our approach.

2) Performance Aspects: We evaluated the performance
of ConfDebugger in terms of time effort for diagnosing a
configuration error. As shown in Table III, the time effort
essentially is caused by three tasks: forward slicing, backward
slicing and analysis. Forward slicing uses 21 seconds, which
is one-time effort per program (as slicing results can be
cached and then used for all of configuration options of the
program). The time of backward slicing depends on the size
of preprocessed stack trace. Analysis operation uses less than
2 seconds.

Overall, the total time is less than 1 minute. This is fast
enough for most usage scenarios. Here, we ignore the time of



Table II
EXPERIMENTAL RESULTS OF DIAGNOSING SOFTWARE CONFIGURATION ERRORS WITH DIFFERENT APPROACHES. DATA IN THE COLUMNS

“CONFANALYZER” AND “CONFDIAGNOSER” IS TAKEN FROM [5] AND [15], RESPECTIVELY.

Error ID
Erroneous ConfDebugger ConfAnalyzer [5] ConfDiagnoser [15] No Filtering

Configuration Option # False Success # False Success # False Success # False Successpositives positives positives positives
1 chord.main.class 1 Y 1 Y 0 Y 1 Y
2 chord.main.class 1 Y 0 Y 0 Y 1 Y
3 chord.run.analyses 0 Y 3 Y 16 Y 21 Y
4 chord.ctxt.kind 0 Y 1 Y 0 Y 4 Y
5 chord.print.rels 0 Y 0 Y 14 Y 8 Y
6 chord.print.classes 0 Y 0 Y 15 Y 3 N
7 chord.reflect.kind 0 Y 4 Y 0 Y 4 Y
8 chord.class.path 2 N 2 N 7 Y 2 N

Ave. # of false positives | Success ratio in % 0.5 87.5% 1.7 88.9% 5.7 100% 5.5 75%

importing statements into database.
3) Comparison with related techniques: We choose Conf-

Analyzer and ConfDiagnoser to make comparison with our
technique. They are two of the most recent and precise
techniques described in the literature of the misconfiguration
diagnosis.

ConfAnalyzer labels all the configurations, tracks the flow
of the labels by static data flow analysis, and treats a con-
figuration option as the root cause if its value flows into the
crashing point. Like our technique, ConfAnalyzer focuses on
crashing errors.

ConfDiagnoser uses static analysis to identify predicates
affected by a configuration option, and records the behavior
of them. If the behavior of the predicates corresponding to
a configuration option is very different from behavior of
predicates in the program with correct configuration, then
ConfDiagnoser identifies this configuration option as the root
cause of the error.

In comparison with the result of ConfAnalyzer shown in
Table II (Column “ConfAnalyzer”), ConfDebugger produces
a better result for 3 of 8 errors, the same results for 4
errors, and worse result for only 1 remaining error. In terms
of the averaged number of false positives, ConfDebugger’s
score is better than ConfAnalyzer. Both of ConfDebugger and
ConfAnalyzer cannot diagnose the error #8, because the value
of the root cause configuration option flows into system calls.

In comparison with ConfDiagnoser, the result in Table II
shows that ConfDiagnoser successfully pinpoints the root
cause for 4 errors without false positives. For the remaining
errors, it gives too many false positives. The average false
positives is much higher than ConfDebugger.

A significant advantage of ConfDiagnoser is that it can
diagnose error #8. The reason is that ConfDiagnoser observes
behaviors of predicates affected by configuration options to
identify the root cause of the error instead of tracking the
configuration options values. However, it needs to build a
database for correct profiles.

C. The Effectiveness of the Breadth-First Search Distance
Filter

In ConfDebugger, we filter slices by using the breadth-first
search distance (Section II-D). In the experiment, we set 1

as the threshold. The statements whose breadth-first search
distance to the seed statement is larger than 1 are excluded
from the slice.

As shown in Table II (Column “No Filtering”), ConfDe-
bugger achieves substantially less accurate results without
filtering. The primary reason is that the slice without filtering
contains too many irrelevant statements. They are indirectly
affected by a configuration option but not helpful in diagnosing
configuration errors. When computing the FChop, a lot of
configuration options are included in results, which leads to
a low accuracy. We can see that it fails in diagnosing error
#6. The reason is that the FChop contains some irrelevant
statements. The AFChop is not triggered. We conclude that
the breadth-first search distance filter is able to significantly
improve the precision of our technique.

D. Experimental Discussion

Summary of results. The following conclusions can be
drawn from the above evaluation.

• ConfDebugger is a highly effective tool for diagnosing
configuration errors. It can produce more precise di-
agnosis result for crashing misconfiguration errors than
existing tools ConfAnalyzer and ConfDiagnoser.

• ConfDebugger shows a good performance in terms of
time effort for diagnosing a configuration error.

• The heuristic of the breadth-first search distance filter
(Section II-D) can significantly increase the accuracy of
diagnosis results.

Limitations. Several limitations exist in the experiments.
Firstly, we only focus on Java applications with key-value
style configuration options. Secondly, the errors we used in the
experiments involve one misconfiguration option. Thirdly, our
technique just works on the crashing errors with a generated
stack trace. Lastly, we assume the application code is correct.
In fact, a user does not know whether the problem is related
to the application code or configuration when he gets an error.
Our technique can not indicate whether an error is raised from
a misconfiguration.

Threads to Validity. There are some threads to validity
in our evaluation. Firstly, although the errors used in the
experiments have been used in multiple papers before, it is
not representative. We did not evaluate our technique on other



programs. Secondly, we use AFChop to cope with the situation
that FChop is empty. Its precision significantly depends on
the structure of a program, or the programming habits of the
developers.

V. RELATED WORK

This section summarizes the closely-related work on soft-
ware configuration error diagnosis. We generally group the ex-
isting techniques into two areas: program analysis approaches
and non-program analysis approaches.

Program analysis. We are aware of three instances of
prior work using program analysis for configuration diagnosis:
ConfDiagnoser [15], ConfAnalyzer [5] and ConfAid [1].

ConfDiagnoser [15] uses a combination of static and dy-
namic analysis technique to record run-time behavior of predi-
cates affected by configuration options in the execution profile.
When predicates affected by a configuration option behavior
differently compared to correct profiles, ConfDiagnoser con-
siders this configuration option as a suspicious root cause of
the error.

In ConAnalayzer [5], a map between configuration options
and source code is built. Then using this map and static anal-
ysis data flow, the faulty configuration options are detected.

In ConfAid [1], at first the dynamic dependencies are
recorded using code instrumenting. After that using the ob-
tained dependencies, the faulty behavior connects to the con-
figuration parameters.

Our approach belongs to this direction of researches in
misconfiguration diagnosis which attempts to improve the
result of predecessor approaches.

Non-program analysis. This direction attempts to find
the root cause of misconfiguration without any source code
analysis. PeerPressure [9] uses statistical techniques to locate
the misconfiguration with comparing a large number of healthy
machines with a non-healthy one. The different value of a
registry entry in a specific machine in comparison with usual
value adopted by other machines can evaluate as a flag for
a misconfiguration. OS-level speculative execution is used by
AutoBash [7] which examines different possible configurations
and chooses the best one to fix the misconfiguration. In [11]
they try to find the time when the system changes from
correct to faulty state with checking the behavior of the system
using a pre-defined testing oracle. Our technique differs from
each of these approaches. It only uses static analysis and just
needs configuration options, stack trace of the failure and the
bytecode of Java program without any additional information.
In addition, it does not need any profiles of the application
with correct configuration.

VI. CONCLUSION AND FUTURE WORK

This paper presents a static analysis technique for diag-
nosing configuration errors. It can identify the root cause by
determining whether the direct data or control dependence
exists between a configuration option and stack trace of an
error.

We evaluated the technique on 8 configuration errors. Result
showed that it can successfully diagnose the root cause for
7 errors. The average number of false positives was 0.5. In
comparison with recent techniques, our technique had a better
performance in terms of average number of false positives.

As a part of the future work we will evaluate how it
generalizes by applying it to other application programs than
JChord. We will also target some deficiencies of the current
work. For example, when a configuration option value flows
into containers, our technique cannot locate the statements
logically related to the configuration option. Another area
for future work is to explore diagnosing inconsistencies in
configuration settings.

ACKNOWLEDGMENTS

We thank Felix Langner and Lutz Büch in PVS group
of Heidelberg University for their useful suggestions. We
appreciate time and effort of the anonymous reviewers to
appraise this work.

REFERENCES

[1] M. Attariyan and J. Flinn. Automating configuration troubleshooting
with dynamic information flow analysis. In OSDI, 2010.

[2] Report. http://static.googleusercontent.com/external_content/untrusted_
dlcp/www.google.com/en/us/appsstatus/ir/ej73a82sddnv7fb.pdf.

[3] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using
dependence graphs. In PLDI, 1988.

[4] JChord. http://pag.gatech.edu/chord/.
[5] A. Rabkin and R. Katz. Precomputing possible configuration error

diagnoses. In ASE, 2011.
[6] M. Sridharan, S. J. Fink, and R. Bodik. Thin slicing. In PLDI, 2007.
[7] Y.-Y. Su, M. Attariyan, and J. Flinn. AutoBash: improving configuration

management with operating system causality analysis. In SOSP, 2007.
[8] WALA. http://sourceforge.net/projects/wala/.
[9] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang. Automatic

misconfiguration troubleshooting with PeerPressure. In OSDI, 2004.
[10] M. Weiser. Program slicing. IEEE Trans. Softw. Eng., 10(4):352–357,

1984.
[11] A. Whitaker, R. S. Cox, and S. D. Gribble. Configuration debugging as

search: finding the needle in the haystack. In OSDI, 2004.
[12] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and

S. Pasupathy. An empirical study on configuration errors in commercial
and open source systems. In SOSP, 2011.

[13] A. Zeller. Isolating cause-effect chains from computer programs. In
FSE, 2002.

[14] A. Zeller. Why Programs Fail: A Guide to Systematic Debugging.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[15] S. Zhang and M. D. Ernst. Automated diagnosis of software configura-
tion errors. In ICSE, 2013.

[16] X. Zhang, R. Gupta, and Y. Zhang. Precise dynamic slicing algorithms.
In ICSE, 2003.


