
Reproducing Timing-Dependent GUI Flaky Tests in Android Apps
via a Single Event Delay

Xiaobao Cai

caixb22@m.fudan.edu.cn

Fudan University

Shanghai, China

Zhen Dong
∗

zhendong@fudan.edu.cn

Fudan University

Shanghai, China

Yongjiang Wang

yjwang23@m.fudan.edu.cn

Fudan University

Shanghai, China

Abhishek Tiwari

abhishek.tiwari@uni-passau.de

University of Passau

Passau, Germany

Xin Peng

pengxin@fudan.edu.cn

Fudan University

Shanghai, China

Abstract
Flaky tests hinder the development process by exhibiting uncer-

tain behavior in regression testing. A flaky test may pass in some

runs and fail in others while running on the same code version.

The non-deterministic outcome frequently misleads the develop-

ers into debugging non-existent faults in the code. To effectively

debug the flaky tests, developers need to reproduce them. The in-

dustry de facto to reproduce flaky tests is to rerun them multiple

times. However, rerunning a flaky test numerous times is time and

resource-consuming.

This work presents a technique for rapidly and reliably reproduc-

ing timing-dependent GUI flaky tests, acknowledged as the most

common type of flaky tests in Android apps. Our insight is that

flakiness in such tests often stems from event racing on GUI data.

Given stack traces of a failure, our technique employs dynamic

analysis to infer event races likely leading to the failure and repro-

duces it by selectively delaying only relevant events involved in

these races. Thus, our technique can efficiently reproduce a failure

within minimal test runs. The experiments conducted on 80 timing-

dependent flaky tests collected from 22 widely-used Android apps

show our technique is efficient in flaky test failure reproduction.

Out of the 80 flaky tests, our technique could successfully reproduce

73 within 1.71 test runs on average. Notably, it exhibited extremely

high reliability by consistently reproducing the failure for 20 runs.

CCS Concepts
• Software and its engineering→ Software testing and debug-
ging.

∗
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ISSTA ’24, September 16–20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0612-7/24/09

https://doi.org/10.1145/3650212.3680377

Keywords
Regression Testing, Event Racing, Dynamic Analysis, Failure Re-

production

ACM Reference Format:
Xiaobao Cai, Zhen Dong, Yongjiang Wang, Abhishek Tiwari, and Xin Peng.

2024. Reproducing Timing-Dependent GUI Flaky Tests in Android Apps via

a Single Event Delay. In Proceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA ’24), September 16–20,
2024, Vienna, Austria. ACM, New York, NY, USA, 12 pages. https://doi.org/

10.1145/3650212.3680377

1 Introduction
Testing is an indispensable part of software development; tests are

run to find faults in the code being changed or developed. Unfor-

tunately, software development suffers from flaky tests. A flaky

test impedes the software development process by passing in some

runs and failing in others while running on the same codebase ver-

sion [19]. In other words, a test failure may not indicate a fault in the

code. A test failing due to flakiness can mislead developers to debug

non-existent bugs in the code, slowing down the development cycle.

Besides, flaky tests are often hard to reproduce [5, 24]. This problem

has been identified as a significant obstacle in software develop-

ment at large companies such as Facebook [11], Google [22, 32],

and Microsoft [14, 15].

Reproducing flaky test failures is often challenging yet necessary.

The error messages and stack traces of a flaky test failure indicate

only the symptom, such as a timeout error or assertion failure,

without obvious hints pointing to the underlying root cause. To

debug such flakiness, a developer needs to repeatedly reproduce a

failing execution so that she/he can enable extensive logging and

observe runtime states accordingly. In fact, recent work [10] shows

that 77% of developers often run flaky tests multiple times when

debugging a flaky-test failure to log different parts of code and

analyze its runtime behavior. Unfortunately, such reproduction is

non-trivial since most flaky tests fail rarely or only in a specific

execution environment, particularly for concurrency-related flaky

tests. Addressing this challenge, Leesatapornwongsa et al., in Mi-

crosoft [18], develop an approach to reproduce concurrency-related

flaky test failures in .NET projects automatically. Lam et al. [17]

explore the effectiveness of rerun in reproducing flaky test failures

in Java projects.

1504

https://orcid.org/0009-0002-8894-9239
https://orcid.org/0009-0009-1193-0696
https://orcid.org/0009-0006-8477-9446
https://orcid.org/0000-0001-8415-5410
https://orcid.org/0000-0003-3376-2581
https://doi.org/10.1145/3650212.3680377
https://doi.org/10.1145/3650212.3680377
https://doi.org/10.1145/3650212.3680377
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3650212.3680377&domain=pdf&date_stamp=2024-09-11

ISSTA ’24, September 16–20, 2024, Vienna, Austria Xiaobao Cai, Zhen Dong, Yongjiang Wang, Abhishek Tiwari, and Xin Peng

While some approaches [8, 28] detect flaky tests in Android,

unfortunately, none guide reproducing them. Reproducing flaky de-

terministically helps developers understand and debug them better.

This paper introduces an approach to automatically reproducing

flaky test failures in Android apps. Unlike traditional programs,

Android adopts the event-driven model in which the execution

flow is determined by events such as user interactions (e.g., button

clicking) and sensor signals. On the Android platform, tests are

executed to simulate events to exercise the app under test. However,

they are often flaky due to timing-related issues, i.e., an event is

executed at an incorrect timing due to asynchronous waits that

might take too long or an event occurring earlier than expected.

This type of flaky tests are called timing-dependent flaky tests and
have been identified as the most prominent flaky tests in Android

apps according to recent studies [25, 30]. Therefore, we focus on

timing-dependent flaky tests failure reproduction. Given such a

flaky test and its failure symptom (i.e., error messages and crash

stack traces), our approach deterministically reproduces a failed

execution that generates the same symptom.

We aim to develop a practical approach to reproduce flaky test

failures efficiently. Our approach must explore event execution

orders intelligently; the number of possible event execution orders

grows exponentially with the number of events generated in a

test run. Existing event race detection tools, such as CAFA [12],

DroidRacer [21], and ERVA [13], narrow down the exploration

space by tracking fine-grain happens-before relations, which require

instrumenting all the read and write operations. Unfortunately, it

is hard to scale them to large apps. Recent flaky test detection tools

such as Shaker [28] explore possible event orders by adding noise

in the execution environment. Unfortunately, these approaches

tend to explore a large number of event execution orders per test.

To ensure efficiency, we need to find a solution that can manifest

failures by exploring minimal event orders.

Our insight is that flakiness in GUI flaky tests often stems from

event racing on GUI data. We can infer event races likely leading to

the given failure during a test run and reproduces it by selectively

delaying only relevant events involved in these races. Therefore,

we can efficiently reproduce a failure within minimal test runs. To

achieve this, we employ dynamic analysis to identify event racing

on GUI data and deem event races that occur prior to the given

failure as “root cause” event races. Then, we can reproduce the

failure by delaying only events involved in these event races.

To identify event races prior to the given failure, we generate

a flame chart [2] that records call stacks throughout a test run,

enabling it to identify a potential point where the given failure may

occur based on its crash stack traces and the corresponding events

leading up to that point. To identify event racing on GUI data, we

extract a list of methods accessing GUI widgets such as TextView
from the Android documentation and monitor these methods at

runtime. To delay an event in a test run, we leverage a key observa-

tion related to the Android event-driven concurrency architecture.

In this architectural model, threads in the Android framework com-

municate with each other by posting events through a designated

method called enqueueMessage(). By dynamically hooking this

method at runtime, we gain the ability to record events generated

during a test run and selectively delay the execution of specific

events. This allows us to dynamically explore and manipulate event

orders without requiring any code instrumentation or modifications

in the app under test and the Android framework.

We implemented our approach into a fully automated tool called

FlakeEcho and conducted evaluations on 80 timing-dependent flaky

tests in 22 widely used and large open-source apps from GitHub.

The experiment results show the effectiveness of FlakeEcho in repro-

ducing timing-dependent flaky tests in Android apps, successfully

reproducing 73 out of the 80 flaky tests. Notably, all the 73 flaky

tests can be successfully reproduced by delaying a single event. On

average, it takes 1.71 test runs to reproduce a failure. Additionally,

for each failure, FlakeEcho generates a delay configuration that

allows the failure to be reproduced deterministically. Under this

delay configuration, the failure manifests in 16.25 out of 20 runs. In

summary, our work makes the following contributions:

• Practical Technique.We present an event delay-based tech-

nique for reproducing timing-dependent flaky test failures in

Android apps. Our approach can efficiently reproduce flaky

tests within a few test runs. The key novelty of our tool,

FlakeEcho, lies in inferring the "root cause" event race of a

given failure and reproducing it by selectively delaying only

relevant events, consequently avoiding exhaustedly explor-

ing all possible event execution orders. More importantly, for

each failure, our approach generates a delay configuration

that allows the failure to be reproduced reliably.

• Extensive Evaluation. We evaluated FlakeEcho on 80

timing-dependent flaky tests from 22 popular open-source

Android apps.Wemeasured the efficiency of the delay config-

urations generated by FlakeEcho in reliably reproducing the

given failures over 20 test runs. To support further research

on flaky test reproduction, we have made FlakeEcho and the

dataset publicly available at: https://github.com/FlakeEcho/

FlakeEcho.

2 Background and Scope
This section provides a brief overview of the event-driven program-

ming model in Android. Next, we explain the timing-dependent

flaky tests that are the main focus of our work and present an

example case.

Event-driven Concurrency Model. In Android’s concurrency

model, every app process has a main thread (called UIthread) and
several background threads. To achieve rapid UI responsiveness,

only the UI thread can access GUI objects. To update the GUI, back-

ground threads send events to the UI thread, and the UI thread dis-

patches these events to the appropriate UI widgets. Long-running

tasks, such as network access, usually run in background threads.

When these tasks are completed, the background threads post

events together with the data to the UI thread. This concurrency

model involves three main components:

• Event. Events can be generated by external entities or in-

ternally by threads or events executed within the applica-

tion. They originate from various sources, including input

devices like screen and GPS sensors, the Android frame-

work (e.g., low battery notifications), third-party libraries

(e.g., Google services), and app components (e.g., threads

exchanging data).

1505

https://github.com/FlakeEcho/FlakeEcho
https://github.com/FlakeEcho/FlakeEcho

Reproducing Timing-Dependent GUI Flaky Tests in Android Apps via a Single Event Delay ISSTA ’24, September 16–20, 2024, Vienna, Austria

@Test
public void testAddFeed() throws Exception {

...
onView(withId(R.id.etxtFeedurl)).
perform(scrollTo(), typeText(feed.getDownload_url()));

onView(withText(R.string.confirm_label)).perform(scrollTo(), click());
...

}

public boolean injectString(String str) throws ...{
...
KeyEvent[] events = getKeyCharacterMap().getEvents(str.toCharArray());
int i = 0;
while(i < events.length){

...
KeyEvent keyEvent = events[i];
injectKeyEvent(keyEvent);
i++;
...

}
...

}

public boolean injectKeyEvent(KeyEvent keyEvent) throws ... {
...
SignalingTask task = new SignalingTask(new Callable<Boolean>() {

public Boolean call() throws Exception {
...

}
}, ...);
ExecutorService keyEventExecutor = Executors.
newSingleThreadExecutor(new ThreadFactoryBuilder() ...);
keyEventExecutor.submit(task);
...

}

A flaky test (run in testing thread)

Perform event (run in UI thread or background thread)

Method call

e2

e1

A chain of calls

1

2 Callable

3 Return (when task done)

4

(c)

e1

e2

(a)

Testing
thread

Background
thread

UI
thread

Execute e1

Return’

1

3

(b)

Execute e24

Callable2

Return3

Figure 1: A timing-dependent flaky test in Android app An-
tennapod.

• Event Queue. Once an event is generated, it is placed in an

event queue. Events in the queue are processed in the order

they were queued, ensuring sequential handling.

• Looper Thread. A looper thread is associated with each

event queue. Its role is to continuously check its correspond-

ing event queue and process events one by one. This ensures

that all events executed in a looper thread are atomic with

respect to each other. In Android, the UI thread functions as

the looper thread.

Timing-dependent Flaky Tests. This paper refers to tests

that yield varying outcomes based on specific execution orders as

timing-dependent flaky tests. These tests pass or fail depending on

the timing or sequencing of events during execution. Two common

patterns in timing-dependent flaky tests are (1) async waits. In this

scenario, a test starts an asynchronous operation and instead of

using proper synchronization to ensure its completion, it waits for

a specific period and assumes that the asynchronous operation has

been completed within that period. The test fails when the opera-

tion does not complete within the fixed wait period.; (2) data race.

Another common pattern is data race caused by multiple threads

accessing the same object instance without proper synchronization.

A data race can non-deterministically lead to test failure. They have

been identified as the most prominent flaky tests in Android apps

according to recent studies [25, 30].

Example. Figure 1 shows a timing-dependent flaky test in An-

droid app Antennapod, a popular open-source podcast player (5.4k
stars on Github). The test is shown in Figure 1 (c) and designed

to validate the feed-adding functionality on the screen in Figure 1

(a). It first localizes the textbox widget on the screen and inputs

a predefined URL in the textbox, and then clicks the “CONFIRM”

button to add the feed to the app. Afterward, it checks if the feed is

successfully subscribed.

This test is processed as follows. As shown in Figure 1 (b), it

first is loaded into a dedicated testing thread that interacts with

the app under test through events. When the first statement is

executed, it generates an event 1 . Receiving event 1 , the UI thread

processes the event and starts to type the given URL into the textbox.

Considering typing URL involves operating the keyboard, the UI

thread offloads the task to a background thread (2). As shown in

the method injectKeyEvent(), each key operation is performed

by the background thread. Once the key operation is completed, the

background thread sends an event (3) to the UI thread for updating

the corresponding letter into the textbox. This process is repeated

until all the letters in the URL are typed into the textbox. Once

the URL typing is done, the testing thread executes the second

statement, sending event 4 to the UI thread. Then the UI thread

adds the URL to the specified location.

The outcome of the test depends on the execution timing of event

4 , i.e., “CONFIRM” button clicking. It passes if event 4 is executed

after the URL being completely filled into the textbox. Otherwise,

it fails. Let us assume event 3 is the last event that is generated by

the background thread in the URL typing task. As shown in Figure 1

(b), if the event 4 occurs after 3 , the test passes. Otherwise, the

test fails. In fact, this order cannot be guaranteed due to the lack of

a reliable synchronization mechanism between the testing thread

and the background thread. Thus, the test manifests flaky behavior,

passing for some runs and failing for others.

3 Overview of Our Approach
This work proposes an approach to reproduce timing-dependent

flaky test failures within minimal runs. The key observation is that

such failures often arise from event races on GUI data. The test

passes for certain event execution orders but fails for specific ones.

To manifest such failures effectively, we apply the following two

heuristics in our approach:

• Event races are more likely to lead to a given failure if they

race on GUI data [25].

• Event races that occur before the failure point are more likely

to lead to a given failure.

Based on these two heuristics, our approach identifies GUI data-

related event races that occur in the test run and infers event races

that are more likely to trigger the failure. It then prioritizes the

exploration of event orders caused by these races.

Problem Formulation. To formulate our problem, we leverage

the event-driven concurrency model established by Hu et al. [13]

1506

ISSTA ’24, September 16–20, 2024, Vienna, Austria Xiaobao Cai, Zhen Dong, Yongjiang Wang, Abhishek Tiwari, and Xin Peng

Thread 𝑡 F 𝑈 𝐼𝑇ℎ𝑟𝑒𝑎𝑑

| 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑𝑇ℎ𝑟𝑒𝑎𝑑

| 𝑇𝑒𝑠𝑡𝑖𝑛𝑔𝑇ℎ𝑟𝑒𝑎𝑑

Thread operation 𝛾 F 𝑓 𝑜𝑟𝑘 (𝑡1, 𝑡2)
| 𝑗𝑜𝑖𝑛(𝑡1, 𝑡2)

Memory location 𝜌 ∈ 𝑃𝑜𝑖𝑛𝑡𝑒𝑟𝑠

Memory access 𝛼 F 𝛼𝜏 (𝜌)
Access type 𝜏 F 𝑟𝑒𝑎𝑑

| 𝑤𝑟𝑖𝑡𝑒

Event 𝑒 F 𝑏𝑒𝑔𝑖𝑛;𝑜𝑝1; ...𝑜𝑝𝑛 ; 𝑒𝑛𝑑

Event type 𝑣 F 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝐸𝑣𝑒𝑛𝑡

| 𝑅𝑢𝑛𝑛𝑎𝑏𝑙𝑒𝑂𝑏 𝑗𝑒𝑐𝑡

| 𝑀𝑒𝑠𝑠𝑎𝑔𝑒

Event posting 𝛽 F 𝑝𝑜𝑠𝑡 (𝑒, 𝑡1, 𝑡2,Δ)
Operation 𝑜𝑝 F 𝛼

| 𝛽

| 𝛾

Trace 𝜋 F 𝑜𝑝1; ...;𝑜𝑝𝑛

Figure 2: Event-Driven Concurrency Model

(Figure 2). In this model, threads 𝑡 can generally be categorized as

either the UI thread, a testing thread, or a background thread. The

Thread operation𝛾 can either fork a new thread from an existing one

or join a thread into another. Event 𝑒 can be an external event that

may originate from user interactions (input event) or the Android

system (system event). Besides, it can also be a message or runnable
object that is usually sent from a background or testing thread

to the UI thread for communication. For example, when a task is

done, the background thread sends a runnable object to return the

results to the UI thread. Memory access 𝛼𝜏 (𝜌) can read or write

memory location 𝜌 . The event posting operation generates and

dispatches an event with a 𝐷𝑒𝑙𝑡𝑎-second latency from one thread

to another. Generally, a background or testing thread posts events

to the UI thread to update results, and Δ is set to 0 by default. Trace

𝜋 contains a sequence of operations above.

Happens-before Relation. We define a happens-before relation,

similar to the traditional concurrency model, as the minimum par-

tial order (i.e., reflexive, anti-symmetric, transitive relation) over

events of a trace such that 𝑒1 ≺ 𝑒2 if :
• Program Order Rule:
𝑒𝑛𝑑 (𝑒1) ≺ 𝑏𝑒𝑔𝑖𝑛(𝑒2) ∧ 𝑒1 ∈ 𝑝𝑜𝑠𝑡 (𝑡) ∧ 𝑒2 ∈ 𝑝𝑜𝑠𝑡 (𝑡)
• Thread Rule:
𝑒𝑛𝑑 (𝑒1) ≺ 𝑏𝑒𝑔𝑖𝑛(𝑒2) ∧ 𝑒1 ∈ 𝑝𝑜𝑠𝑡 (𝑡1) ∧ 𝑒2 ∈ 𝑝𝑜𝑠𝑡 (𝑡2) ∧
𝑓 𝑜𝑟𝑘 (𝑡1, 𝑡2)

Two unordered events 𝑒𝑖 and 𝑒 𝑗 are denoted as 𝑒𝑖 ∥ 𝑒 𝑗 , if they are

not related by the happens-before relation.

Definition 3.1 (Event Races). An event 𝑒𝑖 races with another event
𝑒 𝑗 if there exists a shared variable 𝜌 such that 𝛼𝑖 (𝜌) ∈ 𝑒𝑖 , 𝛼 𝑗 (𝜌) ∈ 𝑒 𝑗
and 𝑒𝑖 ∥ 𝑒 𝑗 , and at least one of 𝛼𝑖 (𝜌) and 𝛼 𝑗 (𝜌) is a write.

Timing Flaky Test Failure Reproduction. Timing-dependent flaky

test reproduction can be addressed as an event order exploration

problem. Given a test 𝑇 and its failure 𝐹 , the objective is to find an

event sequence

−→
𝐸 ∈ Ω(𝑍, ≺), where −→𝐸 is the event execution order

when the failure 𝐹 occurs; 𝑍 indicates the set of events generated

during the execution of test𝑇 . The space of possible event execution

ordersΩ(𝑍, ≺) becomes extremely huge as the number of generated

events increases. Blindly exploring such a space is challenging and

impractical.

Our Idea.We tackle the challenge by leveraging the key insight

that timing-dependent flaky tests often result from event racing on

GUI data during test execution. Our approach involves analyzing

GUI-related event races in the test run and inferring event races that

may occur before the given failure. We only explore event orders

caused by these races, enabling a more efficient manifestation of

timing-dependent flaky test failures.

4 Detailed Approach
The workflow of FlakeEcho is depicted in Figure 3. FlakeEcho takes

the app under test and the test case as input to perform a dynamic

analysis. During the analysis, FlakeEcho monitors and records

events during execution and GUI access operations. Besides, it

captures the execution traces of a test run. Afterward, the collected

runtime data and crash stacks are analyzed to identify event races

that could have caused the failure. Subsequently, FlakeEcho runs

the test by enforcing an order among the events involved in the race

to manifest the failure. To establish an order between two events,

FlakeEcho delays one event to allow the other to execute first. If

the test run successfully reproduces the observed flaky behavior,

FlakeEcho provides the delay configuration as output.

4.1 Event Tracing and GUI Access Analysis
Event Identification. To analyze the event races during a test ex-

ecution, FlakeEcho first records the generated events. As explained

in the background, Android follows an event-driven concurrency

model, where the events that occur during execution are added to

the event queue and processed in sequential order. Consequently,

we record events by hooking the API that places the events into

the queue. Specifically, the event queue object provides a method

enqueueMessage() for posting an event. When an event occurs,

the method will be invoked to place it into the queue. To prevent

any modifications to the Android system and the app under test,

FlakeEcho dynamically hooks this method to record the events.

Unfortunately, the events captured at runtime do not have unique

identifiers. In fact, the captured events are objects that contain dy-

namically generated data. These objects serve as containers for

information that needs to be passed to the event handlers, and

they are often recycled in the execution process. After an event is

processed, it is returned to a pool for reuse later, avoiding unneces-

sary object creation
1
. Identifying an event with the content in the

event object is challenging. On the other hand, FlakeEcho requires

identifying events generated in the test execution, analyzing races

among them, and delaying the execution of an event in the test

run. Thus, we need to develop an approach to generate an event

identifier that can be used across test runs.

To tackle this challenge, we leverage the method employed by

FlakeRepro [18] to compute a unique ID for each event (event ID)

that can be consistently used during test runs. The event ID is

derived by combining the consistent ID of the thread that posts

the event with the execution context within that thread. Specifically,

1
https://developer.android.com/reference/android/os/Message

1507

https://developer.android.com/reference/android/os/Message

Reproducing Timing-Dependent GUI Flaky Tests in Android Apps via a Single Event Delay ISSTA ’24, September 16–20, 2024, Vienna, Austria

Crash Stack

APK

Test

Event & GUI
Access Tracing

Failure-inducing
Event Race Analyzing

Running Test With
Event Delays

Execution Traces

Event Trace & GUI
Access Sequence

Delay
Configuration

Delay
Configuration

Figure 3: The workflow of our approach FlakeEcho

android.preference.EditTextPreference: void setText()
android.preference.EditTextPreference: java.lang.String getText()
android.app.ProgressDialog: void setMax()
android.app.ProgressDialog: int getMax()
android.preference.SwitchPreference: void setSwitchTextOff()
android.preference.SwitchPreference: java.lang.CharSequence getSwitchTextOff()
…

Figure 4: A list of methods that access GUI data in Android

the event ID comprises (1) the consistent ID of the thread posting

the event, (2) the call stack of the thread at the time of posting the

event, and (3) the number of times the thread posts an event with the

same call stack. The consistent thread ID needs to remain the same

across runs. However, the thread ID assigned by the underlying

runtime may vary, as the same logical thread may have different

IDs across different runs. To overcome this issue, we leverage the

observation that threads created in the Android system are often

given a thread name that remains consistent across runs. Therefore,

FlakeEcho utilizes the thread name as the consistent thread ID. By

obtaining this data at runtime, FlakeEcho can compute the event

ID and record events that occur during the test run.

GUI Access Analysis. To effectively analyze event races, it is

essential to track both writing and reading operations during event

processing. Ideally, all data access operations should be recorded,

as event races can arise when two distinct events concurrently

read or write to shared variables in memory. However, in the scope

of this work, we do not need to record all data access operations:

Our main focus is to identify event races that have the potential

to cause timing-dependent flaky test failures, instead of detecting

general concurrency bugs in the app. With GUI testing as the main

focus, it is common for test failures to happen because of differ-

ences between expected results and the data retrieved from the GUI.

Therefore, we consider only event races on GUI data in this work.

To effectively identify GUI data access operations in Android

apps, we begin with a review of the Android documentation. Since

user interfaces are constructed using View and ViewGroup objects

in Android, we focus on examining methods provided by these

classes and their subclasses, such as TextView and LinearLayout.
Figure 4 shows a list of methods that access GUI data in Android.

This analysis allows us to compile a comprehensive list of GUI

reading and writing operations. To record GUI accesses triggered by

an event, we leverage the event dispatching mechanism in Android

that events are dispatched via method dispatchMessage(). The
task can be completed in two steps:

• Given an event 𝑒 , FlakeEcho identifies when the event 𝑒

starts to be processed and when the processing is completed

by hooking method dispatchMessage() at runtime;

• During processing event 𝑒 , FlakeEcho tracks GUI operations

by hooking the compiled GUI access methods, recording

which property values of widgets on the screen are read or

written.

Specifically, for event 𝑒 , FlakeEcho records its ID and a set of vari-

ables in the GUI widgets that are read or modified, which are de-

noted by ⟨𝐼𝐷, {𝛼𝜏 (𝜌1), ..., 𝛼𝜏 (𝜌𝑛)}⟩, where 𝜏 indicates the access

type (i.e., read or write) and 𝜌 indicates accessed variables.

Profiling. To generate a flame chart for a test run, FlakeEcho

leverages an open-source tool Android Method Profiler that can

record call stacks over a test run and analyze traces. It is similar to

the official Android Profiler but operates quickly.

4.2 Failure-inducing Event Race Inference
Given the execution trace and events collected in the previous

step, along with the information about the given failure, we can

infer event races that may lead to the failure. The key idea is to

identify the point in the execution trace at which the given failure

may occur and then analyze the races among events that occur

before the point. These event races are considered failure-inducing

races. Before diving into details, we first introduce two crucial data

structures used in the approach:

• Flame Chart. A flame chart is a visualization that showcases

stack samples chronologically during an app’s runtime. Each

rectangle in the chart corresponds to a stack frame, repre-

senting a specific method or function executed during the

profiling. Figure 5 (a) shows an example of flame chart.

• Crash Stack. The call stack at the time of a failure is referred

as the crash stack shown in Figure 5 (b). It provides a snap-

shot of the functions or methods that were being executed

in the app when the failure occurred.

Algorithm 1 outlines the process of inferring failure-inducing

event races. It takes as input (1) the event sequence and execution

1508

ISSTA ’24, September 16–20, 2024, Vienna, Austria Xiaobao Cai, Zhen Dong, Yongjiang Wang, Abhishek Tiwari, and Xin Peng

Time

M
eth

o
d

 C
all

(a)

(b)

junit.framework.AssertionFailedError
at android.support.test.espresso.matcher.ViewMatchers.assertThat(ViewMatchers.java:1053)
at android.support.test.espresso.assertion.ViewAssertions$2.check(ViewAssertions.java:89)
at android.support.test.espresso.ViewInteraction$2.run(ViewInteraction.java:170)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:462)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
… Crashing Method

(b)

Figure 5: An example of flame chart and crashing stack trace

Algorithm 1: Failure-inducing Event Race Inferring

Input:
−→
𝐸 :Event sequence

Input: 𝜋 : Execution Trace

Input: 𝑠 : Crash stack of the given failure

Input: 𝑘 : Number of suspicious event races

1 Procedure Infer(
−→
𝐸 , 𝜋 , 𝑠 , 𝑘)

2
−→
𝑆 ← generateFlameChart(𝜋);

3 𝐷 ← extractThreadDependence(
−→
𝑆);

4 𝑖 ← identifyFailurePoint(
−→
𝑆 , 𝑠);

5
−→
𝐸𝑏 ← getEventSequenceBeforeFailurePoint(

−→
𝑆 ,
−→
𝐸 , 𝑖);

6
−→
𝑅 ← computeEventRaces(

−→
𝐸𝑏 , 𝐷);

7
−→
𝑅𝑘 ← fetchKNearestRaces(

−→
𝑅 ,𝑘);

8 return

−→
𝑅𝑘

trace collected from the dynamic analysis; (2) the crash stack of

the given failure; (3) the parameter 𝑘 specifying the number of

suspicious event races that need to be considered in the event

order exploration; it can be configured according to scenarios or

requirements. As shown in Line 2, FlakeEcho first takes execution

trace 𝜋 to generate a flame chart by invoking the tool Android

Method Profiler. The flame chart is a sequence of call stacks over

time, which is denoted with

−→
𝑆 . At Line 3, it analyzes the flame

chart

−→
𝑆 to extract the threads involved in the test and compute

relations among them, i.e., fork and join relations (denoted by 𝐷).

Possible Failure Point Identification. Line 4 analyzes a point
in the flame chart

−→
𝑆 at which the given failure likely occurs.

The study [23] shows stack-matching effectively identifies a re-

occurring failure, and the prefix-matching algorithm is more precise.

Moreover, the stack traces of different test runs may exhibit slight

variations. Thus, we use the prefix matching algorithm to compute

the similarity between the crash stack 𝑠 of the failure and each call

stack in

−→
𝑆 . The point with the highest similarity is deemed as the

possible failure point. Specifically, the similarity between two call

stacks 𝑠1 and 𝑠2 is computed with the following formula:

𝑎𝑟𝑔𝑚𝑎𝑥𝑖 {𝑠𝑖1 : 𝑠
𝑖
1
= 𝑠𝑖

2
}/𝑚𝑎𝑥 (|𝑠1 |, |𝑠2 |)

That is, the similarity score of two call stacks is determined by the

size of the longest common prefix normalized to the length of the

longer of the two call stacks.

Suspicious Event Races Computation. FlakeEcho identifies

event races as suspicious if they involve racing on GUI data and

occur prior to the Failure Point. Line 5 to Line 7 of Algorithm 1

explains this workflow. Line 5 performs an analysis to extract the

sub-event sequence

−→
𝐸𝑏 that occurs prior to the possible failure point

identified in the previous step. To achieve this, the algorithm first

maps the events in

−→
𝐸 onto the flame chart

−→
𝑆 . The mapping process

is as follows: for each event 𝑒𝑖 in
−→
𝐸 , the algorithm compares its

call stack with each call stack in

−→
𝑆 . If exactly matched, 𝑒𝑖 is located

at the corresponding point on the flame chart

−→
𝑆 . Note that there

is always an exact match between each event’s call stack and the

flame chart because the recording of each event’s call stack and the

flame chart creation happens within the same test execution. After

all the events are located on

−→
𝑆 , the algorithm identifies the failure

point 𝑖 on
−→
𝑆 . As recall, a flame chart is a visual representation

of call stacks arranged chronologically, therefore, we can identify

events that occur prior to the failure point on

−→
𝑆 . Specifically, the

algorithm takes the events preceding 𝑖 on
−→
𝑆 as the sub sequence

of events

−→
𝐸𝑏 that occur prior to the failure point.

Line 6 performs a computation to identify GUI-related event

races in

−→
𝐸𝑏 using the definition of event races described in Section 3.

For 𝑒𝑖 and 𝑒 𝑗 in
−→
𝐸𝑏 , there exists a GUI-related event race between

them if 𝑒𝑖 and 𝑒 𝑗 access the same variable value on GUI, and at least

one of them is a write operation. In such a way, we can compute

all the event races in

−→
𝐸𝑏 and identify the 𝐾 nearest event races that

occur prior to the failure point as suspicious event races (shown in

Line 7).

4.3 Reproducing Failures via Event Delays
Next, FlakeEcho analyzes each of the𝑘 suspicious event races identi-

fied in the previous step. For each race, FlakeEcho runs the test with

an enforced order between the two racing events and verifies if the

given failure is reproduced. Let 𝑒𝑖 and 𝑒 𝑗 be the suspicious events

that race on GUI data, and 𝑒𝑖 occurred before 𝑒 𝑗 in the recorded

traces. FlakeEcho introduces a delay Δ before executing 𝑒𝑖 in the

test run to enforce 𝑒 𝑗 to occur before 𝑒𝑖 . During the execution,

FlakeEcho monitors the occurrence of a failure.

To confirm whether the given failure is successfully reproduced,

FlakeEcho checks if the failure in the execution is identical to the

given failure. Specifically, FlakeEcho automatically compares the

crash stack resulting from the execution with that of the given fail-

ure. If the crash stack of the reproduced failure matches that of the

given failure, FlakeEcho confirms the given failure is successfully

reproduced and outputs the delay configuration, i.e., the event to

delay and the corresponding delay time.

Notably, in the current configuration, FlakeEcho flips the exe-

cution order of only one event race in each test run. This decision

is grounded in the study’s findings [19], which suggests that most

1509

Reproducing Timing-Dependent GUI Flaky Tests in Android Apps via a Single Event Delay ISSTA ’24, September 16–20, 2024, Vienna, Austria

concurrency-related flaky tests typically involve only two threads.

Therefore, for simplicity, FlakeEcho enforces order for only one

event race in each test run. While enabling FlakeEcho to delay mul-

tiple event races simultaneously could theoretically increase the

efficiency of reproducing flaky tests, it also raises the risk of provok-

ing new failures owing to the compounded effect of inserted delays.

However, if needed, FlakeEcho can still be configured to enforce

the order for multiple event races in a test run to accommodate

more complex scenarios.

5 Implementation
FlakeEcho is implemented as a fully automated flaky test reproduc-

ing framework. It extends two off-the-shelf tools: EdXposed[1] and

YAMP[4] (Yet Another Methods Profiler for Android). EdXposed

is a derivative of the original Xposed[3] framework, and it is used

to hook the method of Android apps and to inject delays dynami-

cally. YAMP generates a frame chart of a running test case and can

monitor real-time stack traces of all threads.

6 Experiment Setup
In our experimental evaluation, we seek to answer the following

research questions:

RQ1: How effective is FlakeEcho in reproducing timing-dependent

flaky tests in Android apps?

RQ2: How reliably can FlakeEcho reproduce a flaky test failure?

RQ3: How does the performance of FlakeEcho change with varia-

tions in the event delay time?

RQ4: How much overhead is introduced by the dynamic analysis

in FlakeEcho?

To evaluate FlakeEcho, we reproduced 80 timing-dependent flaky

tests from 22 real-world Android apps. Table 1 shows the detailed

information of these apps. The Version column specifies the version

number utilized in our study, while #LOC measures the app’s com-

plexity, representing the lines of code written in Java and Kotlin.

Additionally, the #Stars column indicates the app’s popularity, quan-

tified by the number of stars received on GitHub. Moreover, these

applications span multiple categories, including Tools, Music &

Audio, Communication, Maps & Navigation, Finance, and others,

underscoring the dataset’s complexity and diversity. Further test

details are available in the supplementary materials.

Test Collection. To achieve diversity, we collected flaky tests from:

• Research projects.We reviewed recent research papers address-

ing flaky tests in Android applications, i.e., FlakeScanner [8],

Shaker [28], and empirical studies [25, 30]. Then we manually

examined flaky tests in their experiments and identified tests that

are related to “asynchronous waiting” and “concurrency” issues

as likely timing-dependent flaky tests. Through this process, we

ended up with 47 timing-dependent flaky tests from 14 apps.

• Github Repos.We searched commits and bug reports on GitHub

with almost 500 queries that were generated by combining three

types of keywords (1) GUI-related: gui, ui test, view, textview,
button, widget, layout, drawable, theme; (2) flaky-test-related:
flaky, flaky test, flak, intermittent, failing test, fix
test; (3) timing-dependency-related: concurrent, concurrency,
async wait, asynchronous, synchronization, child thread,

Table 1: Details of 22 popular open-source Android apps used
in our study.

App Name Version #LOC #Stars Category

Aegis 2.0.3 43.5k 6.7k Tools

AmazeFileManager 3.4.3 92.2k 4.8k Tools

AntennaPod 1.8.1 102.6k 5.4k Music & Audio

connectbot 0.4.13 122.2k 2.2k Communication

Equate 2.0 16.0k 64 Tools

Espresso 1.0.0 17.3k 1.1k Maps & Navigation

Feeder 1.8.9 91.6k 756 Reader

FireFoxLite 2.1.19 1598.4k 280 Communication

FlexBox 2.0.1 29.2k 18.1k Libraries & Demo

GoogleIO 7.0.15 74.7k 21.8k Books & Reference

Gnucash 2.4.0 90.1k 1.2k Finance

Kaspresso 1.1.0 66.3k 1.7k Productivity

Kiss 3.11.9 27.2k 2.7k Personalisation

MicroPinner 2.2.0 65.0k 41 Tools

Mozilla Focus 102.0 145.3k 2.1k Browser

MyExpenses 3.0.7.1 1835.6k 630 Finance

Omni-Notes 6.1.0 101.8k 2.6k Note

open_flood 1.3.5 3.7k 132 Game

opt-authenticator 0.1.1 17.8k 153 Tools

Shoppinglist 2.2.1 65.2k 63 Shopping

Suntimeswidget 0.12.10 218.8k 290 Tools

YoutubeExtractor 2.0.0 2.7k 874 Video Players

multithread, timeout. In total, we obtained 3481 related com-

mits and 274 related bug reports. After manual examination, we

deemed that 152 commits and 59 bug reports were related to

timing-dependent flaky tests, and then we successfully repro-

duced 33 flaky test failures out of them. Finally, we obtained 33

timing-dependent flaky tests in 8 Android apps.

Flaky Test Reproduction. To reproduce the collected flaky tests,

we executed them 100 times via their test command and observed if

the results contained passing and failing runs. If the results contain

both passing and failing runs, we compared the stack trace of the

failing runs with the developer’s documentation. If they match, we

consider the flaky test reproduced. Utilizing this method, we suc-

cessfully reproduced 9 out of the 80 flaky tests. If a flaky test is not

reproduced, we perform manual debugging using the developer’s

documentation to reproduce them. If the failed run shows the same

behavior as in the developer’s documentation, we mark the test as

reproduced. With this approach, we reproduced the remaining 71

flaky tests.

Specifically, we conducted four studies to answer our research

questions: (1) effectiveness study; (2) reliability study; (3) parameter

sensitivity study; and (4) overhead study.

Effectiveness Study. This study aims to evaluate the effective-

ness of FlakeEcho in reproducing timing-dependent flaky tests.

To achieve this, we run FlakeEcho on the 80 tests to observe the

number of tests FlakeEcho reproduces. In particular, we compare

the stack traces of failure reproduced by FlakeEcho with the stack

traces of original (initially reported) failure. If these are matched,

we deem the flaky test reproduction by FlakeEcho successful.

Baseline Experiment. Additionally, we conducted a Baseline

experiment to gauge how the two heuristics mentioned in Section 3

1510

ISSTA ’24, September 16–20, 2024, Vienna, Austria Xiaobao Cai, Zhen Dong, Yongjiang Wang, Abhishek Tiwari, and Xin Peng

influence the efficiency of reproducing flaky tests. The baseline

method reproduces a failure by exhaustively inducing a delay to

any of the events that occur in the execution, delaying only one

event for each run.

Moreover, we compare FlakeEcho and the state-of-the-art tech-

niques on the 80 tests in terms of the number of reproduced flaky

tests and the average time taken to reproduce failures. Unfortu-

nately, to the best of our knowledge, there are no tools for flaky

test reproduction in Android. Thus, we choose the state-of-the-art

tools that detect flaky tests in Android, since they are closer to

FlakeEcho’s aim.

• Flakescanner [8], a recent work that manifests concurrency

flaky test behaviors in Android apps by exploring event

execution orders that may occur during test execution.

• Shaker [28], a recent technique that detects flaky tests in

Android apps by introducing noise and load to the execution

environment to affect event and thread execution order.

Notably, the comparison between FlakeEcho and the flaky test de-
tection tools is not end-to-end. FlakeScanner and Shaker detect a

flaky test by running a test to witness its flaky test failure. However,

to the best of our knowledge, they are the best reference points,

considering there are no other flaky failure reproduction tools for

Android apps. Thus, we include them in our experiments. We use

the same protocol as used in FlakeEcho to determine if a failure is

successfully reproduced, i.e., if the error type and stack traces of a

reported failure match with those of the given failure. In our exper-

iment, FlakeEcho is configured with specific parameters: 𝑘 is set to

4, and the delay time for an event is set to 500ms. For Flakescanner

and Shaker, we followed the instructions provided in their official

GitHub account. Besides, we used the default parameters given in

their instructions.

Reliability Study. This study evaluates whether the delay config-

uration generated by FlakeEcho can reliably reproduce flaky tests.

For each flaky test, FlakeEcho runs the test with a delay configura-

tion to reproduce the flaky test failure. We run each flaky test 20

times under the provided configuration and check the number of

times the flaky test failure is reproduced.

Parameter Sensitivity Study. This study evaluates the sensitivity

of FlakeEcho concerning the parameter value updates. FlakeEcho

can be configured with different delay values at runtime. A distinct

delay value may result in a different event execution order, leading

to varying effectiveness and reliability of flaky test reproduction.

For this study, we use four parameters: 300ms, 500ms, and 700ms.

For each parameter, we run each of the 80 tests to check the number

of successfully reproduced failures. We run the test for each gener-

ated delay configuration 20 times to check how often the failure is

reproduced successfully.

Overhead Study. This study investigates the overhead introduced
by the dynamic analysis in FlakeEcho. As is, FlakeEcho uses dy-

namic tracking events and GUI access operations, which can lead

to some overhead. We measure this overhead based on the test run

time. Specifically, we run FlakeEcho on 80 tests to perform dynamic

analysis to collect the execution time of each test run and compute

the slow-down ratio by comparing the execution time of a test run

without dynamic analysis.

Execution Environment. Our experiments run on a 64-bit Mac-

book Pro physical machine(macOS Catalina 10.15.2) with a 2.60GHz

6-Core Intel Core i7 CPU and 16GB RAM and use an Android em-

ulator to run all test cases. The emulator is configured with 2GB

RAM and the Android R operating system(SDK 11.0, API level 30).

In the experiments, given a failure, only the corresponding test was

executed. This setting was adopted for all the tools.

7 Experimental Results
7.1 RQ1: Effectiveness Study
In this section, we discuss FlakeEcho ’s efficacy in reproducing

flaky tests and compare it with FlakeScanner and Shaker. Table 2

shows the evaluation results of this study, where column “#Event”

indicates the number of events generated in the test run, column

“Succ” represents whether the tool successfully reproduces a flaky

test failure, column “𝑁𝑠𝑢𝑐𝑐 ” denotes the number of runs out of 20

runs in which a failure is successfully reproduced with the delay

configuration output by FlakeEcho, column “#Run” indicates the

number of test runs performed by FlakeEcho to successfully repro-

duce a failure with 𝑘 set to four, column “Time(s)” indicates the total

execution time taken by FlakeEcho to reproduce a failure, column

“Baseline” indicates the number of test runs performed by Baseline

to successfully reproduce a failure, column “FS” indicates whether

FlakeScanner successfully reproduces a failure, and column “SH”

indicates whether Shaker successfully reproduces a failure.

Result. As shown in Table 2, FlakeEcho successfully reproduces

73 out of 80 timing-dependent flaky test failures in 22 widely used

Android apps. Compared with FlakeScanner and Shaker, it achieves

the best performance in terms of the number of reproduced failures,

followed by FlakeScanner (40) and Shaker (27). More importantly,

the results emphasize the efficiency of FlakeEcho in failure repro-

duction. The average time taken to reproduce a failure stands at

38.53 seconds, and as shown by “#Run”, a successful reproduction

only runs the test around 1.71 times for event order exploration.

This efficiency is notable, considering FlakeEcho’s ability to identify

the faulty event order within an average of 164 events during a test

run, manifesting the order in the subsequent test runs. This is be-

cause FlakeEcho employs two heuristics to optimize the event order

exploration in the failure reproduction. As described in Section 4.2,

FlakeEcho only considers possible event orders that originate from

GUI-related event races in the test run. To further narrow down

the exploration space, FlakeEcho identifies the 𝑘 (𝑘 is set to four in

the experiment) event races nearest to the failing point of the given

failure and prioritizes exploring orders caused by these event races.

The "Baseline" column indicates the results of the baseline ex-

periment. Specifically, the average number of runs required to re-

produce a flaky test using the baseline experiments reached 51.65,

marking a 30.16 times increase compared to FlakeEcho. This sub-

stantial difference highlights the effectiveness of the two heuristics

utilized by FlakeEcho.

Next, we conducted an experiment to observe the entropy of

runtime difference to reproduce a failure one to ten times by each

tool. Since FlakeEcho can reproduce a failure deterministically, the

idea is to observe the efficiency gain of FlakeEcho with an increas-

ing number of failure reproductions compared to other techniques.

1511

Reproducing Timing-Dependent GUI Flaky Tests in Android Apps via a Single Event Delay ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 2: Results of FlakeEcho, Baseline, FlakeScanner(FS),
and Shaker(SH).

Id #Event

FlakeEcho Baseline FS SH

Succ 𝑁𝑠𝑢𝑐𝑐 #Run Time(s) #Run Succ Succ

1 103

√
20 1 22.83 27

√ √

2 121

√
20 1 18.77 35

√ √

3 179

√
12 2 19.81 20

√

4 145

√
19 3 196.99 71

√

5 103

√
20 1 7.57 15

√ √

6 183

√
20 2 21.22 34

7 33

√
20 1 15.32 9

8 108

√
20 1 6.04 17

9 143

√
20 1 70.16 33

√

10 109

√
11 1 6.56 15

11 145

√
20 3 207.01 106

√ √

12 127

√
20 2 37.37 59

13 151

√
20 1 52.53 36

√

14 103

√
14 1 33.87 45

15 140

√
20 3 197.59 88

16 223

√
20 1 6.84 64

√

17 224

√
20 1 11.13 80

√

18 65

√
20 1 5.43 23

√

19 57

√
20 1 8.62 20

√

20 244

√
20 3 25.36 62

√

21 175

√
20 3 20.4 12

√

22 83

√
20 1 6.52 35

√

23 74

√
20 2 52.31 29

√

24 251 4 101.32 251

√

25 94

√
20 2 41.9 33

√

26 86

√
20 1 14.57 20

27 78

√
20 1 23.25 12

√

28 34

√
11 1 1.06 6

√

29 147

√
20 1 18.67 64

30 95 2 36.03 95

√

31 193

√
20 1 24.58 91

32 155 2 9.88 155

33 152 1 8.33 152

34 344

√
18 2 27.58 106

35 290

√
20 1 9.95 70

36 171

√
7 1 6.75 51

√

37 205

√
20 1 7.39 76

38 241

√
20 1 22.7 49

39 245

√
20 1 28.14 59

40 208

√
20 2 88.28 80

41 62

√
20 1 12.47 15

√ √

42 49

√
20 1 11.99 22

√ √

43 53

√
20 1 13.48 24

√ √

44 48

√
20 1 9.41 17

√ √

45 173

√
20 2 16.32 40

√ √

46 197

√
20 3 31.57 34

47 82

√
20 1 3.58 18

√

48 109

√
20 1 23.03 45

√ √

49 396

√
20 1 122.11 52

√ √

50 284

√
20 1 135.37 30

√ √

51 162

√
13 2 13.07 16

52 203 3 43.71 203

53 37

√
20 1 0.85 15

√ √

54 66

√
20 1 0.55 18

55 178 4 76.02 178

56 212

√
20 2 10.69 17

√

57 305

√
16 2 12.51 11

58 282

√
18 3 35.33 29

59 108

√
20 1 5.71 20

√ √

60 379

√
20 1 12.17 54

√ √

61 468

√
11 3 234.46 101

62 190

√
6 4 91.84 73

63 153

√
19 1 7.35 29

√

64 177

√
4 1 3.44 26

65 143

√
20 2 8.4 6

√

66 281

√
13 3 25.42 28

67 58

√
20 2 4.25 6

√

68 41

√
20 1 3.12 18

√

69 39

√
20 1 3.61 16

√

70 44

√
11 2 4.96 9

71 47

√
20 1 3.25 21

√

72 193

√
5 3 79.83 87

√

73 135

√
20 3 19.21 65

√

74 223

√
20 1 12.23 31

√ √

75 184

√
8 2 34.48 17

76 49

√
20 1 2.48 11

√ √

77 273 3 79.93 273

78 255

√
20 3 41.56 16

√

79 407

√
13 1 35.79 49

√ √

80 323

√
11 4 276.07 87

√ √

Avg/

Sum

164 73 16.25 1.71 38.53 51.65 40 27

As is, all the tools could not reproduce all of the 80 failures. Be-

sides, each tool also reproduces some flaky tests that others cannot

reproduce. Thus, to keep the comparison fair, we compare Fla-

keEcho with each tool on the intersection of flaky tests that both

tools could reproduce. Besides, to maximize the comparison, we

compared FlakeEcho with FlakeScanner, Shaker, and 100Rerun one

by one. Specifically, there were 38 test cases that both FlakeEcho

and FlakeScanner could reproduce, 27 test cases that FlakeEcho

and Shaker could reproduce collectively, and 9 test cases that both

FlakeEcho and 100Rerun were able to reproduce. The runtime of

each tool is measured from its initialization until all failures are

successfully reproduced. The time taken in multiple iterations is

compounded by the time taken in each iteration. Figure 6 presents

the result of this experiment, and the artifacts [7] contain detailed

statistics of this study. The x-axis represents the number of times a

failure is reproduced, and the y-axis represents the average time to

reproduce all failures by a tool.

To reproduce all failures once, FlakeScanner takes an average

time of 4.07 times more than FlakeEcho, Shaker takes an average

time of 18.52 times more than FlakeEcho, and 100Rerun takes an

average time of 3.61 times more than FlakeEcho. It indicates that

although FlakeEcho incurs the overhead of dynamic analysis, it

is still the fastest on average due to its fewer number of test runs

compared to the other three tools (FlakeScanner needs 7.32 runs,

Shaker needs 9.58 runs, and 100Rerun needs 14.67 runs to reproduce

a failure once on average). Notably, in some cases in our dataset,

others outperform FlakeEcho in reproducing the first failure. For

example, for cases 41, 44, and 67, FlakeScanner is faster than FlakeE-

cho and for cases 49, 53, and 74, 100Rerun is faster than FlakeEcho.

For reproducing a failure twice, FlakeEcho is slower in only one

case: Test 53 reproduction by 100Rerun. Starting from reproduc-

ing a failure thrice, FlakeEcho outperforms all. As the number of

reproductions increases, the runtime advantage of FlakeEcho be-

comes more pronounced. It indicates that FlakeEcho achieves more

success in reproducing a failure and does it more efficiently than

current techniques.

We investigated the seven cases in which FlakeEcho failed to

reproduce the failure. Test 24 is a test from the FireFoxLite project

and involves requesting data from the Interest. The test fails when

the request is not replied to in a given time, which is longer than the

500 ms FlakeEcho configured in the experiment. Thus, FlakeEcho

failed to reproduce the failure. Test 30 is a test from the Kaspresso

project, and its failure is not GUI data related. FlakeEcho focuses on

exploring possible event orders caused by GUI data-related races

and fails to reproduce this failure. Tests 32 and 33 come from the

Kiss project, test 52 from the Omni-Notes project, test 55 from the

Suntimeswidget project, and test 77 from the Connectbot project

use a testing framework, Espresso, in which a synchronization

mechanism exists for syncing the testing thread and app under

test. They only fail in a corner case in which the synchronization

mechanism does not cover, and the time interval for triggering

these failures is extremely small. FlakeEcho failed to reproduce

them. We will address those cases in further work.

In addition, it is worth noting that the discrepancy observed

in FlakeScanner and Shaker’s performance within our study com-

pared to their reported results might stem from variations in the

1512

ISSTA ’24, September 16–20, 2024, Vienna, Austria Xiaobao Cai, Zhen Dong, Yongjiang Wang, Abhishek Tiwari, and Xin Peng

0

400

800

1200

1600

1 2 3 4 5 6 7 8 9 10

FlakeEcho
FlakeScanner

0

1500

3000

4500

6000

1 2 3 4 5 6 7 8 9 10

FlakeEcho
Shaker

0

400

800

1200

1600

1 2 3 4 5 6 7 8 9 10

FlakeEcho
100Rerun

Number of reproduced failures

Number of reproduced failures

Number of reproduced failures

A
ve
ra
ge
tim
e(
se
c)

A
ve
ra
ge
tim
e(
se
c)

A
ve
ra
ge
tim
e(
se
c)

Figure 6: Average time of reproducing failures for 1-10 times
by using FlakeEcho, FlakeScanner, Shaker and 100Rerun.

execution environment, encompassing differing machine configu-

rations and the context in which the tool was applied. Additionally,

the utilization of default settings may not universally guarantee

optimal performance across diverse testing environments.

7.2 RQ2: Reliability Study
This study investigates how reliable is a delay configuration output

by FlakeEcho in reproducing a flaky test failure. For each of the

73 successfully reproduced flaky tests, we run the test 20 times

with the delay configuration output by FlakeEcho, measuring what

percentage of runs can reproduce the same failure as a metric of the

reliability of each flaky-test failure. This measure helps estimate

how useful FlakeEcho can be for a developer aiming to repeatedly

reproduce a flaky test for debugging purposes such as logging

particular program states. As shown in column "𝑁𝑠𝑢𝑐𝑐 " in Table 2,

on average, the failure can be successfully reproduced for 16.25 out

of 20 runs under the delay configuration output by FlakeEcho. For

53 out of the 73 reproduced flaky tests, 20 out of 20 runs can be

successfully reproduced. The FlakeEcho could not reproduce the

remaining cases (3.75 cases out of 20) because it did not capture

the specific event that needed to be delayed; the call stack differed

when the event was posted in these test runs.

In contrast, FlakeScanner schedules events to reproduce flaky

tests. FlakeScanner can, in theory, provide the order of events to

reproduce flaky tests repeatedly. However, in practice, it did not

implement such functionality. Shaker can identify the optimal noise

configuration for flaky test failure, i.e., using this noise configu-

ration, a test is more likely to fail. However, it cannot use this

configuration to reproduce a flaky test failure for every run reliably.

20 out of 20 runs successfully reproduced the test

Between 10 to 19 out of 20 runs successfully reproduced the test
Between 1 to 9 out of 20 runs successfully reproduced the test

0 out of 20 runs successfully reproduced the test

Figure 7: The number of reproduced flaky tests out of 20 runs
for parameter 300ms, 500ms, and 700ms delays respectively.

7.3 RQ3: Sensitivity Study
This study investigates the sensitivity of FlakeEcho to delay values.

In our experiments, we chose 300ms, 500ms, and 700ms as delay

values to analyze their impact on the effectiveness and the relia-

bility of FlakeEcho. For parameter 300ms, FlakeEcho successfully

reproduced 69 out of the 80 flaky tests. For parameter 500ms, Fla-

keEcho successfully reproduced 73 out of the 80 flaky tests. For

parameter 700ms, FlakeEcho successfully reproduced 65 out of the

80 flaky tests.

Regarding reliability, we run each of the reproduced flaky tests

20 times with the generated delay configuration for the three pa-

rameters and validate how many times a failure is successfully

reproduced. The results are shown in Figure 7. FlakeEcho success-

fully reproduces the flaky test failure 20 out of 20 runs for 41, 53, and

47 flaky tests for parameter 300ms, 500ms, and 700ms, respectively.

That is, when configured with 500ms, FlakeEcho reproduces flaky

tests more reliably. According to our analysis of specific cases of

experimental results, the decreased reliability associated with the

300ms delay configuration is due to an insignificant delay between

the two events, i.e., more delay is needed to emit the desired flak-

iness. This extended gap impedes the 300ms delay configuration

from effectively altering the order of events involved in the event

race, leading to a diminished success rate compared to the 500ms

delay configuration. On the other hand, the decreased reliability

of the 700ms delay configuration arises from sporadic anomalies

triggered by excessively prolonged delays (e.g., Test 12, Test 45,

and Test 65). These irregularities, including sporadic application

crashes, often stem from issues like prolonged UI thread waiting

times, unresponsive applications, or dropped frames.

7.4 RQ4: Overhead Study
This study investigates the overhead introduced by dynamic analy-

sis used in FlakeEcho. FlakeEcho uses dynamic analysis to record

events, GUI access operations, and execute traces, which can intro-

duce overhead in a test run. To measure the introduced overhead,

we run each of the 80 tests 20 times with FlakeEcho, collect the time

taken by dynamic analysis for each test, and compare it with that of

a test run without any analysis. According to our experimental data,

the test execution time with dynamic analysis is 1.53 times higher

than the execution time without dynamic analysis on average. In

1513

Reproducing Timing-Dependent GUI Flaky Tests in Android Apps via a Single Event Delay ISSTA ’24, September 16–20, 2024, Vienna, Austria

the worst case, i.e., test 26, dynamic analysis introduces three times

overhead. We argue that this overhead is acceptable as flaky test

reproduction (e.g., by rerunning them 100 times) is time-consuming

and may take several hours if successful.

7.5 Threats to Validity and Limitations
This section discusses the potential threats to the internal and

external validity of our experiments.

External Validity. Threats to external validity concern with gen-

eralizability of our evaluation results, i.e., our results may not be

applicable outside of our chosen dataset. To mitigate this threat, we

selected apps from the benchmarks of the related research. Besides,

these tests come from 22 well-known and large apps on GitHub.

Internal Validity. Threats to internal validity concern our exper-

imental methodology and whether it affects the outcome of our

evaluation. To mitigate this, we selected flaky tests with developer

documentation. Next, we validated the stack trace against the devel-

opers’ documentation to validate whether a run reproduces a flaky

test failure. This process is potentially error-prone due to human

error. To minimize this threat, at least two researchers performed

independent manual inspections and compared the results to check

for discrepancies.

8 Related Work
Flaky Test Root Cause Identification. Understanding the root

cause of a flaky test is an essential step toward fixing it. Ziftci

and Cavalcanti [31] proposed a technique to identify the potential

location of the root cause of a flaky test. Their technique relies on

the execution traces of all passing and failing test runs. In particular,

they expose the root cause by exploring the first point of divergence

in the control flow of the failing run from any of the passing runs.

Similarly, Lam et al. [14] proposed a technique to identify the root

cause of flaky tests by analyzing the differences between passing

and failing runs under some instrumentation. iDFlakies by Lam

et al. [16] proposed an instrumentation-free approach to identify

the root cause of order-dependent flaky tests. Terragni et al. [29]

proposed a container-based infrastructure for identifying the root

cause of flaky tests. In their approach, a flaky test is executed under

various execution clusters, where each cluster explores a specific

non-deterministic execution environment by fuzzing the execution

environment. In contrast, our approach is instrumentation free and

employs two effective heuristics to explore the space of event exe-

cution. Besides, our approach employs a simple delay injection and

does not incur the overhead of rerunning a test multiple times.

Flaky Test Detection. Recent years have seen multiple ap-

proaches [5, 6, 8, 9, 16, 26, 27] to detect various types of flaky

tests. Alshammari et al. [5] performed a large-scale study on flaky

tests from 24 project suites to extract flaky tests’ behavioral fea-

tures. They developed FlakeFlagger leveraging the result of this

study to identify flaky tests without rerunning them. Qin et al. [24]

proposed a static approach to identify a flaky test based on the data

dependency relations. Similar to FlakeFlagger, their approach also

does not require rerunning the tests. Dong et al. [8] proposed an

approach to detect concurrency-related flaky tests in Android via

event order exploration. Bell et al. [6] employed differential analysis

based on code coverage to discover unstable tests. Shi et al. [26]

proposed running a test numerous times (RERUN) on each mutant

to achieve consistent coverage results. This allowed them to reduce

the impact of flaky tests on the mutation testing process. Dutta et

al. [9] proposed a method for detecting random number-related

flaky tests, i.e., tests that fail due to variations in the sequence of

random numbers generated between runs. Shi et al. [27] presented

a strategy for fixing order-dependent flaky tests by utilizing passing

test results as a resource. In contrast, our method reliably repro-

duces timing-dependent flaky tests. Besides, our technique also

helps the developers in debugging the reason for flakiness.

Large Scale Studies of Flaky Tests. Multiple studies [5, 10, 15,

20, 30] have explored the features and categories of Flaky tests.

Many of these studies showed concurrency as one of the most

prevalent causes of flaky tests. Luo et al. [20] conducted an empirical

investigation of flaky tests within 51 projects. They determined

concurrency to be one of the most prevalent causes of flaky testing

and that the bulk of these incidents originated due to the lack of

reliance on external resources. Throve et al. [30] did an empirical

investigation of flaky tests in Android Applications. According to

their research, more than one-third of flaky tests were caused by

concurrency-related issues. Alshammari et al. [5] performed a large-

scale study on flaky tests from 24 project suites to extract flaky

tests’ behavioral features. In this work, we developed a dataset of

80 timing-dependent flaky tests from 22 large and popular apps

from GitHub.

9 Conclusion
Flaky tests pose a significant concern for all software developers

since they impede regression testing and waste developer efforts.

Earlier research has shown timing-dependent flaky tests as the

most prominent type of flakiness. In this work, we present Fla-

keEcho to reliably reproduce timing-dependent flaky tests to ease

the developers’ debugging efforts. A timing-dependent flaky test

often results from event races originating from concurrent access to

GUI data. FlakeEcho employs two heuristics to prioritize exploring

event orders that likely emit the event races to GUI data access.

In particular, FlakeEcho prioritizes exploring the space of event

orders by prioritizing the orders of events— (1) before the failure

and (2) concurrently accessing GUI data. We evaluated FlakeEcho

on a thoroughly collected 80 timing-dependent flaky tests obtained

from 22 widely used apps. FlakeEcho successfully reproduced 73

out of 80 timing-dependent flaky tests, while the state-of-the-art

techniques FlakeScanner and Shaker only reproduced 40 and 27 of

them. With FlakeEcho ’s efficacy in reproducing timing-dependent

flaky tests, it is an ideal candidate to be utilized by developers to

debug flaky tests. Wemake FlakeEcho and dataset publicly available

to facilitate future research in this direction.

10 Data Availability

To facilitate future research on the analysis of timing-dependent

flaky tests, we make FlakeEcho and our dataset available at [7].

1514

ISSTA ’24, September 16–20, 2024, Vienna, Austria Xiaobao Cai, Zhen Dong, Yongjiang Wang, Abhishek Tiwari, and Xin Peng

References
[1] 2023. EdXposed. Retrieved 2023-8 from https://github.com/ElderDrivers/

EdXposed

[2] 2023. Flame Chart. Retrieved 2023-8 from https://developer.android.com/studio/

profile/inspect-traces

[3] 2023. Xposed. Retrieved 2023-8 from https://github.com/rovo89/Xposed

[4] 2023. YAMP. Retrieved 2023-8 from https://github.com/Grigory-Rylov/android-

methods-profiler

[5] Abdulrahman Alshammari, Christopher Morris, Michael Hilton, and Jonathan

Bell. 2021. FlakeFlagger: Predicting Flakiness Without Rerunning Tests. In

2021 IEEE/ACM 43rd International Conference on Software Engineering: Com-
panion Proceedings (ICSE-Companion). 187–187. https://doi.org/10.1109/ICSE-

Companion52605.2021.00081

[6] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov. 2018. De-

Flaker: Automatically Detecting Flaky Tests. In 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE).

[7] Xiaobao Cai, Zhen Dong, Yongjiang Wang, Abhishek Tiwari, and Xin Peng. 2024.

Artifacts for Reproducing timing-dependent flaky tests in Android apps via a

single delay. https://flakeecho.github.io

[8] Zhen Dong, Abhishek Tiwari, Xiao Liang Yu, and Abhik Roychoudhury. 2021.

Flaky Test Detection in Android via Event Order Exploration. In Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Athens, Greece)

(ESEC/FSE 2021). Association for Computing Machinery, New York, NY, USA,

367–378. https://doi.org/10.1145/3468264.3468584

[9] Saikat Dutta, August Shi, Rutvik Choudhary, Zhekun Zhang, Aryaman Jain,

and Sasa Misailovic. 2020. Detecting Flaky Tests in Probabilistic and Machine

Learning Applications. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis.

[10] Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli. 2019. Un-

derstanding flaky tests: the developer’s perspective. In 27th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE).

[11] Mark Harman and Peter W. O’Hearn. 2018. From Start-ups to Scale-ups: Oppor-

tunities and Open Problems for Static and Dynamic Program Analysis. In 18th
IEEE International Working Conference on Source Code Analysis and Manipulation,
SCAM 2018, Madrid, Spain, September 23-24, 2018. IEEE Computer Society, 1–23.

https://doi.org/10.1109/SCAM.2018.00009

[12] Chun-Hung Hsiao, Jie Yu, Satish Narayanasamy, Ziyun Kong, Cristiano L. Pereira,

Gilles A. Pokam, Peter M. Chen, and Jason Flinn. 2014. Race Detection for

Event-Driven Mobile Applications. SIGPLAN Not. 49, 6 (jun 2014), 326–336.

https://doi.org/10.1145/2666356.2594330

[13] Yongjian Hu, Iulian Neamtiu, and Arash Alavi. 2016. Automatically verifying

and reproducing event-based races in Android apps. In International Symposium
on Software Testing and Analysis (ISSTA).

[14] Wing Lam, Patrice Godefroid, Suman Nath, Anirudh Santhiar, and Suresh Thum-

malapenta. 2019. Root causing flaky tests in a large-scale industrial setting. In

Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis.

[15] Wing Lam, Kivanc Muslu, Hitesh Sajnani, and Suresh Thummalapenta. 2020. A

Study on the Lifecycle of Flaky Tests. In 42nd International Conference on Software
Engineering.

[16] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie. 2019. iDFlakies: A Framework

for Detecting and Partially Classifying Flaky Tests. In 12th IEEE Conference on
Software Testing, Validation and Verification.

[17] Wing Lam, StefanWinter, Angello Astorga, Victoria Stodden, and Darko Marinov.

2020. Understanding Reproducibility and Characteristics of Flaky Tests Through

Test Reruns in Java Projects. In 31st IEEE International Symposium on Software
Reliability Engineering, ISSRE 2020, Coimbra, Portugal, October 12-15, 2020, Marco

Vieira, Henrique Madeira, Nuno Antunes, and Zheng Zheng (Eds.). IEEE, 403–413.

https://doi.org/10.1109/ISSRE5003.2020.00045

[18] Tanakorn Leesatapornwongsa, Xiang Ren, and Suman Nath. 2022. FlakeRepro:

Automated and Efficient Reproduction of Concurrency-Related Flaky Tests. In

Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Singapore, Singapore)

(ESEC/FSE 2022). Association for Computing Machinery, New York, NY, USA,

1509–1520. https://doi.org/10.1145/3540250.3558956

[19] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An

empirical analysis of flaky tests. In Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, (FSE-22), Hong Kong,
China, November 16 - 22, 2014, Shing-Chi Cheung, Alessandro Orso, and Margaret-

Anne D. Storey (Eds.). ACM, 643–653. https://doi.org/10.1145/2635868.2635920

[20] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An

empirical analysis of flaky tests. In International Symposium on Foundations of
Software Engineering (FSE).

[21] Pallavi Maiya, Aditya Kanade, and Rupak Majumdar. [n. d.]. Race Detection for

Android Applications. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation.

[22] Atif M. Memon, Zebao Gao, Bao N. Nguyen, Sanjeev Dhanda, Eric Nickell, Rob

Siemborski, and John Micco. 2017. Taming Google-Scale Continuous Testing.

In 39th IEEE/ACM International Conference on Software Engineering: Software
Engineering in Practice Track, ICSE-SEIP 2017, Buenos Aires, Argentina, May 20-28,
2017. IEEE Computer Society, 233–242. https://doi.org/10.1109/ICSE-SEIP.2017.16

[23] Natwar Modani, Rajeev Gupta, Guy Lohman, Tanveer Syeda-Mahmood, and

Laurent Mignet. 2007. Automatically Identifying Known Software Problems. In

2007 IEEE 23rd International Conference on Data Engineering Workshop. 433–441.
https://doi.org/10.1109/ICDEW.2007.4401026

[24] Yihao Qin, Shangwen Wang, Kui Liu, Bo Lin, Hongjun Wu, Li Li, Xiaoguang

Mao, and Tegawendé Bissyandé. 2022. Peeler: Learning to Effectively Predict

Flakiness without Running Tests.

[25] Alan Romano, Zihe Song, Sampath Grandhi, Wei Yang, and Weihang Wang.

2021. An Empirical Analysis of UI-based Flaky Tests. In IEEE/ACM International
Conference on Software Engineering.

[26] August Shi, Jonathan Bell, and DarkoMarinov. 2019. Mitigating the effects of flaky

tests on mutation testing. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA).

[27] August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. 2019. iFixFlakies:

a framework for automatically fixing order-dependent flaky tests. In Proceedings
of the 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC-FSE).

[28] Denini Silva, Leopoldo Teixeira, and Marcelo d’Amorim. 2020. Shake It! Detecting

Flaky Tests Caused by Concurrency with Shaker. In IEEE International Conference
on Software Maintenance and Evolution.

[29] Valerio Terragni, Pasquale Salza, and Filomena Ferrucci. 2020. A Container-Based

Infrastructure for Fuzzy-Driven Root Causing of Flaky Tests. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering: New Ideas
and Emerging Results.

[30] Swapna Thorve, Chandani Sreshtha, and Na Meng. 2018. An Empirical Study of

Flaky Tests in Android Apps. In International Conference on Software Maintenance
and Evolution (ICSME). 534–538.

[31] Celal Ziftci and Diego Cavalcanti. 2020. De-flake your tests: Automatically

locating root causes of flaky tests in code at google. In 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 736–745.

[32] Celal Ziftci and Jim Reardon. 2017. Who Broke the Build? Automatically Identify-

ing Changes That Induce Test Failures in Continuous Integration at Google Scale.

In 39th IEEE/ACM International Conference on Software Engineering: Software Engi-
neering in Practice Track, ICSE-SEIP 2017, Buenos Aires, Argentina, May 20-28, 2017.
IEEE Computer Society, 113–122. https://doi.org/10.1109/ICSE-SEIP.2017.13

Received 2024-04-12; accepted 2024-07-03

1515

https://github.com/ElderDrivers/EdXposed
https://github.com/ElderDrivers/EdXposed
https://developer.android.com/studio/profile/inspect-traces
https://developer.android.com/studio/profile/inspect-traces
https://github.com/rovo89/Xposed
https://github.com/Grigory-Rylov/android-methods-profiler
https://github.com/Grigory-Rylov/android-methods-profiler
https://doi.org/10.1109/ICSE-Companion52605.2021.00081
https://doi.org/10.1109/ICSE-Companion52605.2021.00081
https://flakeecho.github.io
https://doi.org/10.1145/3468264.3468584
https://doi.org/10.1109/SCAM.2018.00009
https://doi.org/10.1145/2666356.2594330
https://doi.org/10.1109/ISSRE5003.2020.00045
https://doi.org/10.1145/3540250.3558956
https://doi.org/10.1145/2635868.2635920
https://doi.org/10.1109/ICSE-SEIP.2017.16
https://doi.org/10.1109/ICDEW.2007.4401026
https://doi.org/10.1109/ICSE-SEIP.2017.13

	Abstract
	1 Introduction
	2 Background and Scope
	3 Overview of Our Approach
	4 Detailed Approach
	4.1 Event Tracing and GUI Access Analysis
	4.2 Failure-inducing Event Race Inference
	4.3 Reproducing Failures via Event Delays

	5 Implementation
	6 Experiment Setup
	7 Experimental Results
	7.1 RQ1: Effectiveness Study
	7.2 RQ2: Reliability Study
	7.3 RQ3: Sensitivity Study
	7.4 RQ4: Overhead Study
	7.5 Threats to Validity and Limitations

	8 Related Work
	9 Conclusion
	10 Data Availability
	References

