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Abstract
Deep reinforcement learning struggles to general-
ize across tasks that remain unseen during train-
ing. Consider a neural process observed in humans
and animals, where they not only learn new solu-
tions but also deduce shared subroutines. These
subroutines can be applied to tasks involving sim-
ilar states to improve efficiency. Inspired by this
phenomenon, we consider synthesizing a program-
matic policy characterized by a conditional branch
structure, which is capable of capturing subroutines
and state patterns. This enables the learned pol-
icy to generalize to unseen tasks.The architecture
of the programmatic policy is synthesized based on
a context-free grammar. Such a grammar supports
a nested If-Then-Else derivation and the incorpora-
tion of Recurrent Neural Network. The program-
matic policy is trained across tasks in a domain
through a meta-learning algorithm. We evaluate
our approach in benchmarks, adapted from PDDL-
Gym for task planning and Pybullet for robotic ma-
nipulation. Experimental results showcase the ef-
fectiveness of our approach across diverse bench-
marks. Moreover, the learned policy demonstrates
the ability to generalize to tasks that were not seen
during training.

1 Introduction
Deep reinforcement learning has made significant break-
throughs across many control tasks. However, the ability to
generalize across diverse tasks in a task domain remains a
challenge, even for state-of-the-art deep reinforcement learn-
ing algorithms [Packer et al., 2018]. Specifically, consider the
‘Tower of Hanoi’ task, characterized by three pillars and a set
of discs of varying sizes. The primary objective is to transfer
all the discs from the source pillar to the target pillar while
adhering to specific constraints. The variations of the task oc-
cur when the number of discs changes; for example, a control
policy learned from a ‘Tower of Hanoi’ task with three discs.
When evaluating the policy in the ‘Tower of Hanoi’ with four
discs, it exhibits poor performance under these conditions.
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The primary distinction in the ‘Tower of Hanoi’ task domain
is related to the number of discs. Through summarizing the
similar states across the tasks, it is found that the ‘Tower of
Hanoi’ with different numbers of discs shares the same sub-
structure. It is feasible to obtain a general solution applicable
across tasks based on identifying state patterns and reusing
subroutines. Thus, we focus on the problem of learning such
a policy capable of generalizing in a task domain with dif-
ferent variations such as differences in number or position,
where the underlying dynamics are the same.

When examining a neural process in humans and animals,
they possess the capability not only to acquire novel solu-
tions but also to deduce subroutines and apply them to sim-
ilar tasks. These subroutines can be applied to similar tasks
to improve efficiency. Inspired by this phenomenon, we con-
sider synthesizing a programmatic policy characterized by a
conditional branch structure, which is capable of capturing
shared subroutines and state patterns across different tasks in
one domain. Such a policy consists of a set of conditional
branch structures. Each condition is designed to capture the
state patterns. Each branch is applied to computes an action
as return for the agent to execute, expected to deduce a sub-
routine. By doing so, the programmatic policy is expressive
to capture tasks of interest, e.g., subroutines used to improve
decision making and state patterns facilitating the selection of
subroutines. This enables the learned policy to generalize to
unseen tasks, which involves shared subroutines and similar
states.

Algorithms have been proposed to learn programmatic
policies that generalize better than traditional neural network
policies [Verma et al., 2018; Verma et al., 2019], while ne-
cessitating user demonstrations. A programmatic state ma-
chine policy [Inala et al., 2020] that inductively generalizes
to the tasks requiring repetition. A programmatic policy with
a conditional branch structure is proposed in [Qiu and Zhu,
2022], but the generalization across different tasks is not eval-
uated. The architecture of the programmatic policy is synthe-
sized based on a context-free grammar, which is a tailored
domain-specific language. The DSL describes the definition
of a nested If-Then-Else structure. We also incorporate Re-
current Neural Network (RNN) blocks to synthesize the ar-
chitecture of the programmatic policy. The hidden states of
the RNN are retained across different episodes throughout the
agent-environment interactions. This enables the agent to re-



member past knowledge and apply it to new tasks. A task
distribution can be obtained by varying the certain aspects
of the environment settings from a task domain. We utilize
a meta-learning algorithm to train the programmatic policy
across the task distribution.

We benchmark our method against the state-of-the-art re-
inforcement learning baseline methods and ablation methods
in seven benchmarks, which are adapted from PDDLGym for
task planning and Pybullet for robotic manipulation. The re-
sults demonstrate that the programmatic policy trained via our
method exhibits generalization across different tasks. It also
performs well in the more complex task that have not been
encountered before.

Our method draws inspiration from a real-world scenario
involving real robot tasks. We operate under the assumption
that the value of the variations within an environment are un-
likely to exhibit large fluctuation. For instance, consider the
‘Tower of Hanoi’ environment, where complexity escalates
exponentially as the number of discs increases. Completing
such a task with thousands of operations becomes nearly im-
possible for a robot, resulting from the risk of operational
failure in real-world environment. Therefore, the the values
of the variations we consider are all adhere to a reasonable
range in this paper.

2 Method Overview
2.1 Problem Formalization
We consider a task distribution denoted as p(TH), in which
H represents a collection of tasks. An agent with a program-
matic policy is in the form of PE,θ, where the θ presents the
parameter of the policy. The parameter E denotes the pro-
gram architecture which can be defined by Domain Specific
Language (DSL). S and A represent the states and actions
across the tasks. The problem is to train a policy PE,θ(at |
st), that can generalize within TH . Formally, we model each
task τi ∈ TH as a Markov Decision Process defined by a tu-
ple {Si, Ai, Ti, Ri} where Si and Ai denote the environmen-
tal observation and action spaces, respectively. Furthermore,
Ti : Si × Ai × Si → [0, 1] represents state transition proba-
bilities, and Ri : Si × Ai → R quantifies the corresponding
rewards when transitioning between states. The parameter of
the policy θ̂i is estimated by maximizing the cumulative dis-
counted reward Es0,a0,s1···∼PE,θi

[
∑∞

0 γt · Ri(st, at)] where
γ ∈ (0, 1]. Subsequently, we update the policy PE,θ by the
θi learned from each task.

2.2 Architecture Synthesis
A programmatic policy processes an environmental state as
input and produces an action for the agent. Drawing inspi-
ration from the program architecture search framework [Qiu
and Zhu, 2022], we infer the architecture of a programmatic
policy denoted as PE,θ by DSL.

The DSL is represented in Backus-Naur form [Winskel,
1993]. A context-free grammar, depicted in Figure 1, is
crafted to define the programs to be learned. The E is non-
terminals, representing the program. The C is an affine trans-
formation to compute an action value. B is evaluated by
RNN layers which acts as a condition. This design facilitates

Figure 1: DSL for programmatic policy

Figure 2: Illustration of training programmatic policy

the retention of knowledge across various tasks. X ∈ Rm

represents the state observation, m denoting the dimension.
This DSL allows the derivation of programs. As an exam-
ple, we can deduce a program as if B1 then C1 else E1 to
if B1 then C1 else (if B2 then C2 else E2). The semantics
of the program, such as if B1 then C1 else E1, are computed
by a function denoted as Jif B1 then C1 else E1K(x), where
the variable x serves as input to the If-Then-Else program.
yielding a real-valued vector as output. C ::= θc + θT · X ,
yielding a real-valued vector as output, is an affine transfor-
mation, where θ ∈ Rm×n and n represents the dimension of
the action spaces.

To ensure differentiability, the program derived from the
DSL can be interpreted as a numerical approximation:

Jif B then C else EK(s)
= σ(JBK(s)) · JCK(s) + (1− σ(JBK(s))) · JEK(s)

, where σ represents the sigmoid function. By utilizing the
sigmoid function, the If-Then-Else program is transformed
into a differentiable expression with binary branch structure.
The output of the sigmoid function represents the probability
of selecting a particular branch. The definition of the policy
architecture aids to capture the subroutines and state patterns.

2.3 Training of Programmatic Policy
The left part of Figure 2 illustrates a program derivation tree
with a depth of three. The blue circle represents E which
can be expanded to a if-then-else branch, and orange repre-
sents C which is to output the action value. According to
the DSL expression, we can systematically expand a program
into a program derivation tree. The program derivation tree
represents all possible program derivations within a specified
depth limit for program abstract syntax trees. From Figure 2,
W is a vector containing the knowledge of the selection of



Algorithm 1: Algorithm for training programmatic
policy

Input: Distribution over tasks p(TH), Learning rate α,
Meta Learning rate β, DSL E, Depth d

Output: Trained policy Pθ

1 Derive Programmatic Policy Pθ via E and d
2 Initialize θ = {W, φ}
3 while not done do
4 Sample task Ti ∼ p(TH)
5 Sample Trajectories with Pθ

6 Store in ReplayBuffer Bi

7 Using PPO to estimate θ̂i with learning rate α

8 θi+1 ← θi + β(θi − θ̂i)
9 end

10 Extract Pθ={φ} by fixing an optimalW
11 while not done do
12 Sample task Tj ∼ p(TH)
13 Sample Trajectories with Pθ

14 Store in ReplayBuffer Bj

15 Using PPO to estimate θ̂j with learning rate α

16 θj+1 ← θj + β(θj − θ̂j)
17 end

each layer’s architecture. Each digit in W models a binary
selection. For instance, probC1

represents the probability of
expanding E1 into C1 and 1− probC1

signifies the probabil-
ity of expanding it into if B1 then C2 else E2. The value of
probC1 is calculated using a Softmax function. Besides W ,
φ is another learnable parameter of the programmatic policy.
According to the definition of DSL, φ encompasses the pa-
rameters from both the RNN layer denoted as B and the lin-
ear layer denoted as C. Thus, the parameter θ can be viewed
as a combination ofW and φ, denoted as θ = {W, φ}. As E
derived from a DSL, E can be regarded as a constant. Then
we focus on optimizing the θ of policy P .

In this paper, we consider Proximal Policy Optimiza-
tion [Schulman et al., 2017] as the foundational reinforce-
ment learning algorithm to train the policy as depicted in the
right part of Figure 2. The actor P i represents the program-
matic policy we defined, while the critic Qi is actually a neu-
ral network. We utilize a ReplayBuffer Bi for storing trajec-
tories during training.

We adopt Reptile [Nichol and Schulman, 2018] as the
learning algorithm for gradient update, which is shown in the
bottom part of Figure 2. It operates by performing a stochas-
tic gradient descent on the sampled tasks and updating the
initial parameters toward achieving the final learned param-
eters specific to the given task. It is worth noting that we
omit the fine-tuning process. The algorithm solely needs a
black-box optimizer such as SGD or Adam and offers good
computational efficiency and performance.

We propose an algorithm to demonstrate the synthesis of
the programmatic policy, as in Algorithm 1. The algorithm
takes as input training hyperparameters, a DSL description,
the maximum depth of the program derivation tree denoted

Figure 3: Procedure of agent-environment interaction

as d, and a task distribution. In line 1, a programmatic pol-
icy Pθ is deduced in the form of a program derivation tree
with depths ranging from 1 to d based on the input DSL.
In line 2, we initialize the parameters θ = {W, φ} to be
learned. Specifically, we initialize W with a 50% probabil-
ity for each branch selection. At the training stage, in line 4,
a task is sampled from the task distribution. The trajectories
are obtained by agent-environment interactions, in which we
design a mechanism to help the agent utilize the RNN blocks.
It is elaborated upon in the following section. Subsequently,
the trajectories derived from these interactions are stored in
a ReplayBuffer for training. PPO is employed to optimize
the parameters. We update both {W, φ} sequentially using
a bilevel optimization technique. According to Reptile, the
formula β(θi− θ̂i) can be considered as a gradient and subse-
quently utilized in a more advanced optimizer, such as Adam.
After a certain number of training steps, theW and φ of the
policy tend to stabilize. At this point, we can determine the
specific architecture of the programmatic policy fixing theW ,
as depicted in line 10. Specifically, sinceW models a series
of binary selections, the better architecture of the policy is se-
lected with the maximum likelihood. Since the current policy
has only one parameter φ, repeat the above steps to train the
policy until it converges, in line 11 to 17.

2.4 Using RNN to Improve Agent-environment
Interactions

The process of the agent interacting with the environment,
as described in both line 6 and line 16 of Algorithm 1, is
visualized in Figure 3. For each task obtained from a task
distribution, multiple episodes are generated through agent’s
exploration. During each episode, the agent engages with a
task environment. Once the agent generates an action at, the
environment provides the corresponding reward rt, advances
to the next state st+1, and determines if the episode termi-
nates. This termination status is recorded using the flag dt,
which is set to 1 if the episode ends or left at a default value
of 0 otherwise. The input is constructed by combining the
following elements: the next state st+1, action at, reward rt,
and termination flag dt.

As the task changes, the agent must adjust its actions ac-
cording to the MDP in which it believes it is currently located.



Thus, the agent aggregates all available information on past
rewards, actions, and termination flags and continually adapts
its policy. To facilitate the agent in learning from prior expe-
rience, the programmatic policy incorporates RNN. It utilizes
actions and rewards from preceding time steps as training in-
puts. According to the DSL in Figure 1, certain blocks of
the policy comprise recurrent neural network cells. The hid-
den state ht is a vector summarized from the programmatic
policy. Using the hidden state ht+1 and input state st+1 as
inputs, the policy generates the subsequent action at+1 and
updates the subsequent hidden state ht+2. The policy’s hid-
den state is retained across episodes but is not carried over
between distinct tasks.

3 Experiments and Evaluation
We evaluate the effectiveness of our approach on two groups
of challenging benchmarks1, as illustrated in Figure 4. One
group comprises three benchmarks—Hanoi, Stacking and
Hiking adapted from [Silver and Chitnis, 2020], where the
action space is discrete. These benchmarks primarily serve to
evaluate our approach in the context of task planning.

• Hanoi: Involves various-sized discs stacked in a pyra-
mid formation on the source pillar. The goal is to me-
thodically transfer all the discs, one at a time, to target
pillar in Figure 4a. The primary variation in this environ-
ment is determined by the number of discs involved. In
Hanoi, we encode the observation state as a 1×9 vector.

• Hiking: The character is required to traverse pathways
and collect all stars on the map. Variations in this envi-
ronment pertain to the quantity and positioning of these
stars, as depicted in Figure 4b. The entire state of the
map is encoded as the state of the environment, with the
dimension of 1× 80.

• Stacking: Multiple plates of varying sizes are scattered
on a tabletop. The task is to systematically pick up these
plates one by one using a gripper and to assemble them
in descending order of size, shown in Figure 4c. In
this environment, we encode the table status, the stacked
plates and the location of the gripper as the environment
state, with a dimension of 1 × 35. Variations in this en-
vironment arise from different quantities of plates and
their respective positions.

Another group comprises four tasks which are Pan-
daReach, PandaPush, PandaSlide, PandaStack. These
benchmarks are developed within the Pybullet environ-
ment [Gallouédec et al., 2021]. Each environment consists of
a Panda robot and a set of manipulable objects. The bench-
marks in this group aim to assess our approach in continuous
action spaces such as motion control. The variations in the
four benchmarks involve differences in both number and po-
sition of the manipulable objects, indicated by distinct colors.
The target object needs to be manipulated to reach the target
point with the corresponding color. When the number and
position of the manipulable objects change, each task domain
becomes very large.

1Code and benchmarks: https://github.com/V0idwu/
meta-prl-code

• PandaReach: This task involves manipulating the
robot’s end-effector to reach the target positions, as il-
lustrated in Figure 4d.

• PandaPush: The objective is to use the robot’s end-
effector to push the blocks to the target positions of the
corresponding colors, as shown in Figure 4e.

• PandaSlide: The goal is to use the robot’s end-effector
to slide the cylinders to the target positions of the corre-
sponding colors, as depicted in Figure 4f.

• PandaStack: The aim of the task is to place the blocks
in the correct positions of the corresponding colors and
stack them in order, as shown in Figure 4g.

We encode the observation state as a 1×32 vector. The action
of the robot is a 4-dimension vector, which contains a 3D
coordinate for the end-effector and a finger control.

To highlight the advantages of our approach, we conduct a
comparative analysis with the following baselines/ablations:

• PPO, SAC: PPO [Schulman et al., 2017],
SAC [Haarnoja et al., 2018] serve as baselines in
reinforcement learning, trained within a specific
environment with fixed variations.

• HIRO: HIRO [Nachum et al., 2018] is a general off-
policy algorithm for hierarchical reinforcement learning,
trained under identical conditions as PPO.

• PRL: PRL, the Programmatic policy [Qiu and Zhu,
2022], is learned within the framework of PPO and
trained under the same conditions.

• ReptilePPO, ReptilePRL: Reptile serves as the founda-
tional meta-learning algorithm. ReptilePPO and Rep-
tilePRL are trained in a task domain with the PPO and
PRL respectively.

• PPO-N: Trained within the same meta-learning algo-
rithm of ReptilePPO and ReptilePRL. However, the pa-
rameter of the model is not updated in a meta-learning
manner.

• Ours: Our approach, based on the ReptilePRL, in-
corporates an RNN structure and a designed agent-
environment interaction.

Performance Table 1 presents an evaluation of the perfor-
mance of the methods PPO, SAC, HIRO, PRL, ReptilePPO,
ReptilePRL, and our approach. We trained the three meth-
ods—PPO, SAC, HIRO and PRL in a fixed task, such as
Hanoi-3. ReptilePPO, ReptilePRL and our approach are
trained across tasks, e.g., the number of the discs in Hanoi
ranging from 1 to 4, denoted as Hanoi-1234. Subsequently,
we evaluated their performance in the trained tasks and un-
seen tasks respectively. Evaluation involves measuring the
mean and variance of the required action steps for agents to
complete tasks. A smaller number of action steps indicates
better performance. In the Hanoi benchmark, a single test
suffices because the initial state is the same under the differ-
ent random seeds.

Overall, our method exhibits superior performance in the
majority of benchmarks. Moreover, as the environment’s
complexity increases, the corresponding rise in the required

https://github.com/V0idwu/meta-prl-code
https://github.com/V0idwu/meta-prl-code


(a) hanoi (b) hiking (c) stacking

(d) panda-reach (e) panda-push (f) panda-slide (g) panda-stack

Figure 4: Benchmarks for experiments

test envs PPO SAC HIRO PRL ReptilePPO ReptilePRL Ours
train envs: Hanoi-3 train envs: Hanoi-1234

Hanoi-3 187 241 95 423 52 66 51
Hanoi-5 290 257 223 493 150 128 98
Hanoi-7 386 387 311 500 250 258 151

train envs: Hiking-3 train envs: Hiking-12345
Hiking-3 210.65± 61.66 220.81± 80.06 202.00± 57.02 117.88± 49.32 21.95± 13.79 47.21± 18.84 32.18± 16.36
Hiking-5 328.44± 66.49 268.17± 89.64 323.16± 61.49 267.31± 69.90 129.46± 46.49 51.85± 24.45 32.50± 16.10

Hiking-10 373.66± 63.78 414.39± 73.58 378.64± 62.93 385.74± 61.30 325.13± 65.63 181.65± 51.50 67.86± 31.07
train envs: Stacking-3 train envs: Stacking-1234

Stacking-3 55.97± 26.02 80.80± 38.70 29.29± 15.58 114.96± 37.90 43.35± 19.50 23.40± 12.52 22.29± 10.96
Stacking-5 147.54± 49.16 168.47± 73.32 136.06± 45.22 226.06± 64.15 113.71± 33.91 41.02± 17.55 41.36± 18.70
Stacking-8 267.47± 66.48 322.58± 88.01 317.98± 71.15 341.84± 71.79 235.10± 63.27 72.77± 31.93 61.44± 28.07

train envs: PandaReach-3 train envs: PandaReach-1234
PandaReach-3 192.15± 66.30 242.49± 84.71 119.99± 38.16 103.89± 53.00 47.77± 12.48 70.57± 30.16 40.35± 16.13
PandaReach-5 283.06± 74.24 222.15± 90.92 220.81± 61.86 195.31± 42.78 96.40± 27.72 174.34± 50.19 53.10± 25.06
PandaReach-8 384.47± 65.41 313.26± 95.68 359.77± 62.23 440.76± 50.25 373± 52.69 347± 62.67 125.16± 44.26

train envs: PandaPush-3 train envs: PandaPush-1234
PandaPush-3 108.06± 51.18 105.06± 75.34 164.52± 39.28 122.25± 38.97 114.16± 35.12 22.64± 12.66 34.23± 16.38
PandaPush-5 221.66± 73.59 197.25± 35.66 259.24± 53.80 243.74± 64.36 305.35± 69.62 32.53± 16.25 39.18± 15.35
PandaPush-8 377.86± 60.12 353.47± 75.43 378.17± 55.00 376.34± 65.02 410.25± 61.90 67.61± 30.93 62.62± 27.02

train envs: PandaSlide-3 train envs: PandaSlide-1234
PandaSlide-3 61.78± 30.15 92.05± 46.24 372.86± 73.99 68.66± 28.10 38.57± 11.99 39.46± 18.98 34.69± 17.38
PandaSlide-5 113.08± 53.65 156.47± 69.96 440.74± 52.91 145.43± 42.65 106.71± 26.51 74.42± 29.25 50.64± 25.41
PandaSlide-8 257.03± 77.26 249.52± 89.30 449.24± 45.62 310.81± 58.87 295.95± 60.06 266.47± 63.84 196.67± 47.36

train envs: PandaStack-3 train envs: PandaStack-1234
PandaStack-3 146.32± 40.27 130.46± 55.15 117.07± 40.49 103.30± 51.75 30.75± 15.29 34.12± 17.39 27.53± 13.76
PandaStack-5 236.55± 55.26 287.26± 76.10 229.11± 58.39 221.52± 69.39 62.60± 26.42 137.47± 51.21 45.46± 20.12
PandaStack-8 352.95± 64.16 295.67± 86.04 377.76± 71.03 339.82± 64.12 184.81± 47.94 279.55± 74.26 132.67± 42.02

Table 1: Performance comparison for evaluating policies in the benchmarks is averaged over 10 random seeds. The performance is measured
by mean number of steps an agent takes to achieve goals, along with standard deviations. PPO, SAC, HIRO, PRL are trained in specific
environments with fixed variations. For example, Hanoi-3 denotes a 3-disc ’Tower of Hanoi’ task with three discs. ReptilePPO, ReptilePRL
and our approach are trained in environments with a range of variations, e.g., Hanoi-1234. The test domain contains the tasks during training
as well as the unseen tasks.



number of steps remains within acceptable limits. In a few
benchmarks, RetilePRL achieved the best results and Rep-
tilePPO showed the best performance in Hiking-3. These
results illustrate that employing a meta-learning training ap-
proach and a designed programmatic policy enables the
learned policy to generalize effectively when facing unseen
tasks. In contrast, PPO, SAC, HIRO and PRL exhibit poor
performance in most benchmarks, with their performance
varying significantly as the complexity of the benchmarks in-
creases.

The performance of these algorithms in benchmarks char-
acterized by greater complexity is also illustrated in Ta-
ble 1. The threshold for the maximum number of agent-
environment interactions is set to 500. For instance, when
PRL is applied to Hanoi-7, the number of action steps re-
quired reaches 500, which means the failure of the task.
Policies trained by PPO and HIRO demand approximately
400 steps to complete the task. When confronted with pre-
viously unseen tasks during training, policies trained with
ReptilePPO or ReptilePRL demonstrate a degree of gener-
alization by completing the task in roughly 100 steps. Evi-
dently, these methods outperform the PPO, HIRO and PRL.
Nonetheless, it exhibits subpar performance in intricate sce-
narios such as hiking-10 or PandaReach-8.

Policies trained using our method consistently exhibit com-
mendable performance. With the exception of PandaSlide-
8 and PandaStacking-8, the performance of our method re-
mains stable despite changes in the value of the variations in
the benchmarks. Given the exponential complexity of Hanoi,
the optimal number of actions for hanoi-7 is 127. In our
method, the solution for this task requires 151 action steps,
showcasing commendable performance compared to other
methods. These results indicate that our approach has the
ability to capture the state patterns when trained across the
tasks in one domain. The designed policy architecture aids
in summarizing useful subroutines. By capturing the state
patterns and shared subroutines, our method showcases gen-
eralization when facing unseen tasks.

Ablation Study We investigate the impact of two ideas: the
combination of a meta-learning framework with a designed
programmatic policy and the utilization of RNN blocks in
policy architecture. The convergence curves of PPO-N, Rep-
tile, ReptilePRL, and our method (Ours) are compared, as il-
lustrated in Figure 5 Each policy is trained in the task domain
and is evaluated in a fixed environment respectively. The ver-
tical axis represents the number of steps required for the agent
to achieve its objective, while the horizontal axis denotes the
number of iterations involving agent-environment interaction
episodes.

First of all, the policies learned by PPO-N struggle to
achieving convergence in all benchmarks. Combining the re-
sults from Table 1, policies trained across tasks tend to exhibit
better performance. It suggests that programmatic policies
tend to be more effective in learning sharing subroutines for
tasks.

According to Figure 5, ReptilePRL and ReptilePPO
achieve similar results in most benchmarks. However, com-
pared to ReptilePPO, ReptilePRL performs more consistent

Figure 5: Comparison of the training curve for PPO-N, Rep-
tilePPO, ReptilePRL and Ours in the seven benchmarks. Results
are averaged over 10 random seeds.

performance across all benchmarks. For example, Rep-
tilePPO struggles to learn to finish the tasks in PandaPush-5,
PandaPush-7 and PandaPush-8. This suggests that program-
matic policies tend to be more effective to learn sharing sub-
routines of a task domain. This confirms that a well-designed
programmatic policies may be more effective in handling
generalization.



In the comparison between our approach and ReptilePRL,
both approaches attain commendable performance in most
tasks. However, as scenario complexity increases, Rep-
tilePRL struggles to maintain an optimal solution in com-
plex scenarios, whereas our approach consistently converges
to a satisfactory solution. This is likely due to the fact that
when the agent interacts with environments and preserves
the RNN’s hidden states between each episode, the agent
trained by our method effectively leverages prior knowledge
and transfers it to new tasks. These results signify that the
incorporation of RNN blocks into programmatic policies ef-
fectively improve the ability to generalize across tasks.

4 Related Work

Generalization in RL Generalizing out of data distribu-
tion is challenging for reinforcement learning algorithms.
A set of research focus on vision-based models to enhance
sample efficiency or generalization. One main idea is data
augmentation for visual observations such as, random trans-
late, crop, color jitter, patch cutout [Laskin et al., 2020;
Yarats et al., 2021]. Moreover, [Hansen and Wang, 2021]
proposes SOft Data Augmentation which decouples data aug-
mentation from policy learning.

In robotics, models that perform well in simulators tend
to exhibit reduced performance in the real world. Environ-
ment randomization is explored to bridge this gap [Tobin et
al., 2017]. [Packer et al., 2018] claims that environment ran-
domization is the most effective method so far to improve
generalization ability based on experiments on several sets of
MuJoCo. [Akkaya et al., 2019] introduces the Automatic Do-
main Randomization (ADR) algorithm to address the issue of
models trained in simulated environments performing poorly
in real environments. [Tzeng et al., 2020] treats the transition
from simulator to reality as a transfer learning problem. The
real world robotic controller is learned by the ideas of domain
adaptation and paired image alignment. These methods use
environment randomization for sim2real problem. CoinRun,
designed to test the generalization performance of deep re-
inforcement learning algorithms, is introduced by [Cobbe et
al., 2019]. An approach, randomizing convolutional neural
netowork, is evaluated in CoinRun [Lee et al., 2019]. A regu-
larization parameter is proposed as a positive role to improve
the model’s generalization. However, there are potential is-
sues with increasing environment randomization, including:
increased complexity of the environment, increased complex-
ity of training and dramatically increased variance.

Another way to improve generalization is regularization.
According to [Liu et al., 2019; Farebrother et al., 2018], it is
claimed that L2 regularization can produce better results than
entropy regularization, and L2 regularization can find a good
balance point for model’s ability and generalization. [Lu et
al., 2020] considers deep reinforcement learning models as
two parts: the perception layer and the decision-making layer.
An information Bottleneck approach is proposed to constrain
the information transmitting, due to the perception layer be-
ing more prone to overfitting to the current training environ-
ment.

Programmatic Policy There existing prior work that men-
tions programmatic policies to address motion control prob-
lems in reinforcement learning. [Trivedi et al., 2021] pro-
poses that combine learning a program embedding space with
unsupervised searching to yield a program that maximizes the
return of a given task. Besides, the searching part is improved
in [Liu et al., 2023]. Though, the program in this work is in
the format of a procedure instead of a policy in reinforcement
learning, which can not interact with environments.

Some approaches are proposed to learn programmatic poli-
cies from neural network based policies, such as learning
decision tree policy by model compression [Bastani et al.,
2018], learning a program by Bayesian optimization [Verma
et al., 2018] or generating symbolic policy by an autoregres-
sive recurrent neural network [Landajuela et al., 2021]. The
main idea of these work is to learn programmatic policies by
referring to a neural network.

An algorithm for learning programmatic state machine
policies that can capture repeating behaviors is proposed
in [Inala et al., 2020]. This method follows a teacher-student
learning paradigm. Specifically, a programmatic state ma-
chine policy is guided by the supervision of a neural net-
work policy trained by RL. Besides the training algorithm,
we focus on the generalizability of the model when the vari-
ations of the environment change, such as in number or posi-
tion. [Liu et al., 2018; Cui and Zhu, 2021] propose to encode
program architecture search as learning the probability dis-
tribution over all possible program derivations induced by a
context-free grammar. This allows the search algorithm to ef-
ficiently prune away unlikely program derivations to synthe-
size optimal program architectures. In [Qiu and Zhu, 2022],
a programmatic policy is learned by architecture search for
control problems without demonstrations. Follow these lines
of work, we utilize meta-learning algorithm to synthesize a
programmatic policy for generalization in a task domain.

5 Conclusion and Future Work

We introduce an approach aimed at synthesizing program-
matic policies that can capture subroutines across tasks in
one task domain. In order to improve the effectiveness of
training, we utilize a meta-learning algorithm to synthesize
the programmatic policy. Additionally, we incorporate RNN
blocks for the policy architecture, enabling the utilization of
previously acquired knowledge. Experimental results demon-
strate the effectiveness of our method in synthesizing a pro-
grammatic policy capable of generalizing across tasks, even
extending to unseen tasks during training.

Building upon our current method, two avenues for future
research emerge. The first involves expanding the applica-
bility of our method to more intricate scenarios, such as the
scope of the task domain getting larger. The second direction
entails exploring the inclusion of additional grammars into
the DSL, resulting in a programmatic policy endowed with a
more intricate architecture capable of addressing more com-
plex tasks.
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and Roman Garnett, editors, Advances in Neural Informa-
tion Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, De-
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