
An Empirical Study on Fault Diagnosis in Robotic
Systems

Xuezhi Song, Yi Li∗, Zhen Dong∗, Shuning Liu, Junming Cao, Xin Peng
{songxuezhi,liy,zhendong,liushuning,xinpeng}@fudan.edu.cn, jamescao2048@gmail.com

School of Computer Science

Fudan University
Shanghai Key Laboratory of Data Science

Fudan University
Shanghai, China

Abstract—Fault diagnosis in robotic systems is challenging
due to their complex and heterogeneous structures and complex
interactions with physical environments. Given the complexities
and uncertainties, we think it may be helpful to diagnose faults
of a robotic system by understanding its behaviors from the
perspective of observability. In this paper, we conduct an empir-
ical study to explore the efficacy of combining different kinds
of common observability data (i.e., logs, traces, and trajectories)
for fault diagnosis in robotic systems. In the study, we investigate
root causes of 398 bug cases in robotic systems to understand
their characteristics. Furthermore, we replicate 23 bugs out of
them and perform a fault diagnosis study in which participants
diagnose each of the replicated bug with only observability
data and record how useful observability data is. The bug
case analysis study revealed that the root causes of bugs in
robotic systems originate from various levels, including physical
environment interaction (11.81%), hardware usage (14.82%),
software implementation (49.25%), and system configuration
(24.12%). The fault diagnosis study shows the combination of
trace and trajectory data improves the fault diagnosis success
rate by 58.33% and 8.33%, respectively, compared to using only
logs. Our study promotes the vision of observability-based fault
diagnosis in robotic systems.

Index Terms—robotic system, ROS, debugging, fault diagnosis,
observability

I. INTRODUCTION

Autonomous robots have been increasingly used in different

areas such as agriculture, manufacturing, logistics, medical

treatment, and services to automate various tasks that are

critical to the users [66]. For example, logistics robots are used

to move goods to support the operation of warehouses; mobile

robots are used to deliver food to customers in restaurants.

In these applications, faults may affect the robot’s efficiency,

cause failures, or even jeopardize the safety of the robot or

its surroundings [27]. Therefore, when a fault is detected it is

imperative to proceed with a diagnosis process to identify the

root causes to enable fault recovery or decision making such as

using undamaged redundant components or re-planning [44],

[65].

Fault diagnosis in robotic systems is challenging due to their

complex and heterogeneous structures and complex interac-

tions with physical environments. A robot may comprise a sig-

Co-corresponding author

nificant number of hardware and software components that are

quite heterogeneous in their structure and functionality [76].

Nowadays, Robot Operating System (ROS) [60], [61] has been

widely used for the development and operation of robotic

systems in both academia and industry. A ROS-based robotic

system is a typical distributed system where the applications

are implemented as a set of nodes that perform various

computation and interact using distributed communication.

Moreover, a robot and its components closely interact with

dynamic physical environments, thus are frequently subject to

faults caused by various problems like wear, damage, unex-

pected environmental changes, or design and implementation

flaws [76], the fault diagnosis is complicated by the large

number of heterogeneous hardware and software components

and the uncertainties in their distributed communication and

environment interactions.

It shows that most robotics systems frequently contain

bugs [70]. The bugs are investigated for comprehensive

understanding to take further action. Zampetti et al. [77]

classify 22 different root causes of bugs in cyber-physical

systems (CPSs) and group them into 8 high-level categories,

including hardware, network, interface, data, configuration,

algorithm, documentation and others. For unmanned aerial

vehicles (UAVs) or drones, main hazards and accidents [28]

respectively are classified into 19 and 7 categories respectively

from reported safety issues. For autonomous vehicle (AV),

Garcia et al. [30] investigate bugs from aspects of root cause,

symptom, and affected AV component. Fischer-Nielsen et

al. [29] empirically study dependency bugs in ROS, which

are caused by configuration error due to the complex relation-

ships of different components, and classify them by location,

dependency fault, and failure. Our research focuses on runtime

bugs of ROS-based robotic systems. We classify root causes

and their impacts from the perspective of observability guided

by the MAPE-K [43] reference model.

In current practice of ROS-based robot development, the

developers highly depend on messages and logs collected

from different nodes for fault diagnosis. However, messages

and logs only reflect local behaviors and states of specific

nodes and cannot provide information about execution pro-

cesses through different nodes. Moreover, they cannot provide

207

2023 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSME58846.2023.00030

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

M
ai

nt
en

an
ce

 a
nd

 E
vo

lu
tio

n
(I

C
SM

E)
 |

97
9-

8-
35

03
-2

78
3-

0/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

SM
E5

88
46

.2
02

3.
00

03
0

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 20,2024 at 09:03:44 UTC from IEEE Xplore. Restrictions apply.

information about interactions with physical environments,

e.g., point clouds, robot poses, and trajectories. Model-based

diagnosis approaches compare the observed behaviors of a

robot to the expected behaviors based on an explicit prior

model of the normal system behaviors, structures, and/or

known faults [44], [76]. These approaches may possess a

global view of the robot, but it is often hard to construct

a complete prior model that covers both internal component

interactions and external environment interactions.

Given the complexities and uncertainties, we think it may

be helpful to understand the behaviors of a robotic system and

diagnose its faults from the perspective of observability. The

term “observability” originates in control system theory and

measures the degree to which a system’s internal state can be

determined from its output [35], [55]. For modern distributed

systems such as microservice systems, observability usually

means the ability of monitoring and understanding the internal

states and execution processes of a system based on logs,

traces, and metrics [48], [67]. For diagnose of a fault robotic

system it may also be feasible and helpful to combine different

kinds of observability data, which include log, trace and

trajectory.

• Logs record events that occur in the operating system or

applications, which are widely used for system debug.

• Traces are produced by distributed tracing and record the

execution processes through different nodes.

• Trajectories are produced based on sensor data, robot

model, and environment maps and reflect the trajectories

of robots in physical environments.

In particular, we are concerned with whether traces and

trajectories can be combined with logs for more effective fault

diagnose.

In this paper, we conduct an empirical study on fault

diagnosis in robotic systems to answer the following research

questions.

• RQ1. What are the root causes of bugs and their impacts

in robotic systems?

• RQ2. How can observability data be utilized in fault

diagnosis of robotic systems.

To answer RQ1, we conduct a bug case analysis to manually

analyze 398 bug cases reported in real-world robotic systems

and study their root causes and impact on the robotic systems.

To answer RQ2, we replicate 23 bug cases in a robotic appli-

cation and recruit five graduate students to accomplish fault

diagnosis tasks with the help of logs, traces, and trajectories.

The results of the bug case analysis indicate that root causes

of robotic system bugs originate from different levels of the

system, including environment interaction (11.81%), hardware

usage (14.82%), software implementation (49.25%), and sys-

tem configuration (24.12%). Furthermore, 91.45% of the bugs

cause direct malfunction, while 8.54% result in performance

degradation. The results of the fault diagnosis study show that,

among the 84 (out of 115 tasks) successful tasks, 33.33% use

log-based analysis, 58.33% further use trace-based analysis,

and 8.33% further use trajectory-based analysis. The results

confirm that the combination of traces and trajectory data

with logs can significantly improve the effectiveness of fault

diagnosis when the faults involve interactions among different

nodes or with physical environments. Our study also reveals

the requirements of infrastructures and tools for the collection,

analysis, and visualization of observability data.

This research paper presents the following contributions:

• We conduct a bug case analysis of 398 real-world robotic

system bugs to understand their root causes and impact

on the systems, providing insights for fault diagnosis in

robotic systems.

• We replicate 23 bug cases in a robotic application and

recruit five graduate students to perform fault diagnosis

tasks using logs, traces, and trajectories, demonstrating

the effectiveness of combining different types of observ-

ability data for fault diagnosis in robotic systems.

• Our study highlights the requirements for infrastructures

and tools needed for the collection, analysis, and visual-

ization of observability data in robotic systems.

• The results of our research provide valuable guidance

for practitioners in the field of robotic systems and fault

diagnosis, as well as informing the development of more

efficient diagnostic techniques and tools.

The rest of the paper is structured as follows. After some

background in Section II: Section III introduces our study

methodology; Section IV illustrates our results and findings;

Section V states some threats; Section VI discusses related

works. Concluding remarks are in Section VII.

II. BACKGROUND

A robotic system consists of various physical (hardware)

components (e.g., camera, GPS sensor, arm, gripper) and cyber

(software) components (e.g., a control algorithm) and interacts

with the environment (e.g., a terrain) [46]. Typically, a robotic

system has a layered design consisting of hardware layer,

control layer, and application layer. A control layer implements

a collection of drivers that manipulate and interact with hard-

ware components; while an application layer implements more

complex and specialized functionalities by utilizing the control

layer to integrate and coordinate hardware components [21].

Robot Operating System (ROS). ROS is an open-source

robotic software framework and middleware and the latest

version is ROS 2. ROS provides a set of software libraries

(e.g., drivers, algorithms) and developer tools for building

robot applications. It features a message-passing scheme for

distributed robot processes, hardware abstraction, development

tools (e.g., simulator), and robotic libraries (e.g., path planning

algorithm) [46]. A ROS application can be implemented as

a set of nodes each of which is a process that performs

computation. For example, there can be nodes analyzing

recorded images, planning paths, controlling wheel motors,

and providing graphical view of the system. These nodes

are combined together into a graph and communicate with

one another using streaming topics, RPC services, and the

parameter server [61]. Therefore, a ROS-based robotic system

208

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 20,2024 at 09:03:44 UTC from IEEE Xplore. Restrictions apply.

is usually a distributed system where nodes are deployed in

different devices and interact with distributed communication.

Fault Diagnosis in ROS. For ROS-based robotic systems

the developers highly depend on logs for fault diagnosis. ROS

provides a generic logging functionality that records informa-

tion about its own status, sensor data, and messages between

nodes. Moreover, the developers can record the internal status

of a node using a logger. ROS provides a topic-based mecha-

nism called rosout for reporting log messages and a message

mechanism called rosbag to filter and record specific topic

messages. To facilitate the monitoring of the runtime state of

a robotic system, ROS provides a visualization program called

rviz. Its visualization panels can be dynamically instantiated to

view a large variety of sensor data, e.g., images, point clouds,

geometric primitives, robot poses and trajectories [60]. rviz
implements a plugin architecture, thus visualization plugins

can be easily written to interpret and display different types of

data. ROS also provides a simple fault diagnostic system [76].

The diagnostics system is designed to collect information from

hardware drivers and robot hardware to users and operators

for analysis, troubleshooting, and logging [62]. The system

contains a tool chain for collecting, publishing, analyzing

and viewing diagnostics data. The tool chain is built around

a specific topic (“/diagnostics”), on which hardware drivers

and devices publish diagnostic messages with information like

device names, status and specific data points. Therefore, the

diagnostics system can only deal with faults related to specific

hardware or hardware drivers that publish data on the topic.

Distributed Tracing. In modern distributed systems such as

microservice systems, distributed tracing has been widely used

to record and understand the execution processes of the sys-

tems through different services and compute nodes [48]. For a

robotic system distributed tracing can also be used to observe

and analyze the service invocation and interaction processes

through different nodes in ROS. A trace represents a series of

causally related distributed events that encode the end-to-end

request workflow through a distributed system [67]. According

to the OpenTracing specification [16], a trace consists of a set

of spans organized in a tree structure and each span represents

a service interaction via service invocation or topic message.

Open-source systems such as Skywalking [9], Zipkin [20], and

Jaeger [12] follow the OpenTracing framework and provide the

distributed tracing infrastructures distributed systems.

III. STUDY DESIGN

Our empirical study is planned as two stages: bug case

analysis and fault diagnosis study, which correspond to RQ1
and RQ2 respectively. In the first stage, we investigate the

characteristics of collected bugs in robotic systems, and

prepare a fair dataset for the second stage based on bug

characteristics. Then the dataset is used to evaluate different

methods for fault diagnosis in robotic systems.

A. Bug Case Analysis

To gain full understanding of robotic system bugs, we

collect a set of bug cases reported in real robotic systems,

and analyze bug cases manually to study their root causes and

corresponding impacts on robotic systems.

1) Dataset: We have two sources available for our study: a

public dataset Robust [17] and a dataset ARSB (Anonymous

Robotic System Bugs), which is built upon bugs of a company

focusing on developing robotic systems.

Robust. ROBUST is an output of a project funded by

the European Union’s Horizon 2020 research and innovation

programme. It has been used in previous work on ROS bug

analysis [29]. The dataset contains 219 ROS bugs collected

from eight widely used ROS packages by manually analyzing

1,790 bug issues. The dataset statistics are shown in Table I,

where the first two columns denote names and descriptions of

the ROS packages; the third column indicates the number of

Github stars; the fourth column shows the number of issues

that were analyzed during bug collection; the last column

reveals the number of robotic system bugs collected from

these ROS packages. As shown in the table, the dataset is

well created and maintained in terms of the popularity of

collected subjects (with 316 Github stars on average) and bug

distribution among them. Moreover, each bug in the dataset is

well described, including reproducing steps beneficial to our

fault diagnosis study.

ARSB. This dataset has 263 records of robotic system

bugs from the past two years, originating from an anonymous

company specializing in automated delivery and hotel service

robots, primarily developed using the ROS architecture. Each

bug in the dataset has already been resolved and is accompa-

nied by a bug report discussing the process from bug discovery

to resolution, including symptom and solution details. Notably,

each bug occurred in a user scenario, providing insights into

real-world issues that arise with the robotic systems. For

commitment to privacy protection, we cannot disclose any

detailed data owned by the company. However, we can further

abstract the bug information, including descriptions of the

symptoms and their root causes. This data can be accessed

on our anonymous website. Although this abstraction covers

details, it still provides valuable insights regarding the bug

characteristics and their underlying causes.

TABLE I: The Statistics of the ROBUST Dataset

Package Description Stars Issues Bugs

MAVROS [14]
Communication protocol
drivers of autopilots.

653 325 57

Kobuki [13]
Kobuki’s driver and
Ros tools

191 623 40

Universal
Robot [19]

Control and
communication nodes.

765 158 25

Motoman[15]
Motoman industrial
robot controllers.

115 78 22

TurtleBot [18]
Basic drivers for
TurtleBot running ROS.

257 170 12

Care-O-Bot [10]
Packages for low
level control tasks.

67 182 11

geometry2 [11]
Coordinate transforms
track ROS package.

166 254 42

Confidential – – N/A 10

Ave/Sum 316 1790 219

209

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 20,2024 at 09:03:44 UTC from IEEE Xplore. Restrictions apply.

2) Preprocessing: As our study focuses on fault diagnosis,

we are particularly interested in robotic system bugs that result

in runtime errors. To obtain such bugs, we manually examine

each bug case in both ROBUST and ARSB datasets. Our

examination procedure involves checking if a bug case is

labeled with the runtime error type. If there is no label, we

scrutinize the bug description, commit message, and related

code to confirm whether the bug cause a runtime error.

Ultimately, we select 135 bugs out of 219 from ROBUST and

all 263 bugs from ARSB, for a total of 398 bug cases that

cause runtime errors. These bugs are then used for further

analysis in our study.

3) Analysis: We first collect a set of labels for root causes

and categories of bugs based on previous work [28], [29], [30],

[77]. However, we conduct this research from the perspective

of observability. We try to categorize root causes to match

different layers of robotic systems. We manually analyze these

398 bug cases to examine their root causes and impacts guided

by MAPE-K [43] reference model. Actually, the labels for root

causes and their categories frequently change during analysis

until they sounds fair enough to us all.

We classify the root causes of bug cases by analyzing their

bug reports and fix commits. Given a bug case, we first review

the report description and subsequently discuss to gain a

preliminary understanding of the bug. Then we further analyze

the fix commit of the bug to understand the changes made for

the bug fix. Based on the analysis we decide a type of root

causes that the bug case belongs to. Furthermore, we analyze

the overall impact of a bug from the perspective of users, for

example performance downgrade, or malfunction. To this end

we analyze the issue description and follow-up discussion to

understand the overall impact.

B. Fault Diagnosis Study

In this stage, we aim to evaluate how and when observability

data can help us in fault diagnosis for robotic systems. We

first select and replicate 23 bug cases from the ROBUST and

ARSB. We then recruit several participants to diagnose faulty

system with our methods. Finally, we analyze the recorded

fault diagnosis processes to understand how different kinds of

observability data are used in fault analysis.

1) Bug Replication: Reproducing a bug in robotic sys-

tems is difficult since it often requires an environment in

which a robot can interact with the physical world. Such

an environment is typically built with specified hardware and

software. Different bugs may require different types of devices

and different versions of applications. It is challenging to

obtain various devices for bug reproduction. To overcome this

challenge, we implement a food delivering system in which a

robot can perform various activities, such as grasping a cup

and delivering it to a costumer. Specifically, our delivering

system consists of two TurtleBot2 robots and a JAKA robot

arm. The detail configuration of these devices is shown in

our replication package. On the system, we can replicate
bugs reported in different systems based on their descriptions.

By replicating a bug, it means we simulate it on our food

delivering system that “works” in the exact same way as

described in the bug report.
Notice, considering our limited resource and time, we

replicate a portion of bugs in ROBUST and ARSB instead of

all the 398 bugs. To make replicated bugs more representative,

we take the following procedure for bug replication. As these

398 bugs have been classified into different categories in the

bug case analysis study (8 categories as shown in Section IV),

we replicate at least two bugs for each category. For the

category with more than 10 cases, we replicate relatively more

bugs in our affordable efforts. Table II show the details of the

23 replicated bugs.
2) Fault Diagnosis Method: Our work aims to study how

observability data is used in fault analysis of robotic systems.

We particularly focus on log, trace, and trajectory, which

are useful and commonly used in fault diagnosis of robotic

systems. In ROS-based systems, logs and trajectory data are

automatically generated during execution and can be simply

collected. However, we leverage a distributed tracing frame-

work Zipkin [20] to collect trace data for the ROS system.

Zipkin is open-sourced and widely used in distributed systems

such as microservice systems.
To observe how the three kinds of observability data are

used in fault analysis, we design a staged diagnosis method.

According to debugging experiences in practice, developers

first try simple methods and exploit local information, such as

log, for most bugs are simple and affect system immediately;

traces are further employed with logs to tackle faults involving

several components; trajectories are used to observe internal

behaviors of robotic systems. Finally, our diagnosis approach

is divided into three incremental stages:

• Log-based Analysis. Given a system failure, in this stage

only the logs are available for a participant in the fault

analysis, i.e., the participant only can check the logs to

reason about the failure. If the participant fails to localize

its root cause in this stage in the given time, then she/he

moves to the second stage.

• Trace-based Analysis. In this stage, the participant is

provided with not only the logs but also the traces

generated during this failure for fault analysis. We call

the analysis in this stage trace-based analysis. If failing

to localize its root cause in the given time, then the

participant moves to the third stage.

• Trajectory-based Analysis. In this stage, the participant is

provided with additional observability data, i.e., trajectory

data collected during the failure, i.e., the participant can

analyze the log and trace data as well as trajectory data

to diagnose the root cause. We call the analysis in this

stage trajectory-based analysis. If the participant still fails

to localize its root cause in this stage, we consider the

participant fails to diagnose this failure.

3) Fault Diagnosis Process: We recruit several participants

to use our 3-stage diagnosis method. When a failure occurs in

a robotic system, typically, we first check logs of the failure

to infer its root cause since the logs are easily accessed in the

system. If not successful, we seek observability data which is

210

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 20,2024 at 09:03:44 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Replicated Bugs for Fault Diagnosis Study

Description Type
B1 Robot wobbles during movement due to inaccurate physical centroid description Improper Physical Modeling
B2 Robot keeps moving without responding to new tasks due to incorrect topic message ROS Node Communication Bug
B3 Robot remains stationary after accepting tasks due to incorrect API parameters for direction recognition Application Logic Bug
B4 Idle robot unresponsive to tasks because of incorrect namespace mapping between multiple robots Improper ROS Configuration
B5 Robot system crashes as driver nodelet thread is uninitialized Application Logic Bug
B6 Robot fails to move due to missing type conversion when parsing messages Application Logic Bug
B7 Robot moves in the opposite direction because of an incorrect numerical calculation formula Application Logic Bug
B8 Robot remains stationary due to improper usage of serial port API Hardware Misuse
B9 Robot fails to move under manual control due to incorrect remapping configuration Improper ROS Configuration
B10 Robot spins in circles without moving forward due to incorrect global coordinate system in topic message ROS Node Communication Bug
B11 Robot stumbles while moving because of incorrect subscription relationships ROS Node Communication Bug
B12 Robot system fails to start due to incompatible dependencies Improper Operating System Configuration
B13 Radar malfunctions because of missing runtime dependencies Improper ROS Configuration
B14 User-specified recovery behavior fails to execute due to incorrect array boundary access Application Logic Bug
B15 Robot response is slow as pass-by-reference communication is used in high real-time requirement nodes Application Logic Bug
B16 Robot arm remains stationary as hardware status is not checked after power-up Hardware Misuse
B17 Robot stops suddenly as minimum movement speed is insufficient to overcome physical friction Unforeseen Physical Conditions
B18 The robot gets stuck while passing through a half-open door due to the oversized inflation of the Costmap. Unforeseen Physical Conditions
B19 Robot fails to move because of incorrect pose in robot model Improper Physical Modeling
B20 Robotic arm stops suddenly during motion as it fails to avoid ”singularity” Hardware Misuse
B21 Robot system crashes during mission execution due to outdated Qt dependency versions Improper Operating System Configuration
B22 Robot remains stationary because of damaged radar Hardware Malfunction
B23 Robot stops suddenly while moving as USB serial cable becomes unplugged from Kobuki base Hardware Malfunction

higher level such as traces and trajectory data. In general, these

kinds of data are more helpful in fault analysis but relatively

expensive to obtain. Collecting trace and trajectory data often

requires additional libraries or third party tools.

A participant diagnoses a failure with the following data:

• Failure Description. For each failure, we write a piece of

text briefly describing the failure, e.g., a robot does not

move its arm when a move command is sent.

• Error messages. When a failure is replicated, we identify

the error massages that are generated when the failure

occurs.

• Logs. For each failure, we collect all the logs generated

in the ROS system.

• Traces. The trace data is automatically collected by our

tracing tool Zipkin.

• Trajectory. The trajectory data is generated and collected

by the rivz tool in the ROS system.

The participant has 3 hours to diagnose each failure. She/he

first reads the failure description and error massages and makes

sure she/he understands the failure. Then she/he follows the

3-stage diagnosis method above to localize the root cause of

the failure. We ask all participants record their fault diagno-

sis processes. During analysis, the participant herself/himself

decides whether she/he fails to localize the root cause in the

current stage and whether moves to next stage for accessing

more observability data. We do not set a fixed time budget

for each stage because a participant with different background

may require a different time for the same stage. Thus, we

let the participant decide when to move to next stage. For

each task, we record in which diagnosis stage the participant

successfully localize the root cause and her/his fault analysis

experience by conducting an interview.

IV. RESULTS AND FINDINGS

In this section, we present the results of our empirical study

and summarize the findings. Based on the results and findings,

we answer the three research questions. All the dataset and the

results can be found in our replication package on anonymous

link: https://sites.google.com/view/robot-bug-study/.

A. Bug Case Analysis (RQ1)

In the bug case analysis, we investigate the characteristics of

robotic system bugs from their root causes and overall impact

from the perspective of users.

1) Labeling: With provided initial labels, two of the authors

independently assign labels to each bug. In addition, we

enhance the labels by utilizing an open-coding scheme to

expand the list. In particular, when encountering bugs that do

not fit within the initial labels, each author performs a manual

analysis and chooses their own label for those bugs.

After all the bugs are labeled by each author, they come

together to compare their assigned labels. To address any

conflicts, a third party is brought in to facilitate a consensus-

driven discussion. We calculate the inter-rater agreement using

Cohen’s Kappa. The final Cohen’s Kappa coefficient for root

causes and impact are 0.89 and 0.82 respectively.

2) Root Cause: The results are shown in Table III. We

classify the 398 bug cases into four level, i.e., physical environ-

ment interaction, hardware usage, software implementation,

and system configuration. Each category encompasses two

types of root causes. Among the 398 bug cases, 47 (11.81%)

are related to physical environment interaction, 59 (14.82%)

are related to hardware usage, 196 (49.25%) are related to

software implementation, 96 (24.12%) are related to system

configuration.

Physical Environment Interaction. Root causes related

to physical environment interaction include two types, i.e.,

Unforeseen Physical Conditions (UPC) and Improper Physical

211

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 20,2024 at 09:03:44 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Bug Case Analysis Results

Robust ARSB
Root Cause

#Bugs #Malf #PerfD #Bugs #Malf #PerfD
Physical Environment Interaction 6 6 0 41 38 3
Unforeseen Physical Conditions 2 1 0 11 10 1
Improper Physical Modeling 4 5 0 30 28 2

Hardware Usage 13 13 0 46 43 3
Hardware Malfunction 1 1 0 23 22 1
Hardware Misuse 12 12 0 23 21 2

Software Implementation 89 77 12 107 94 13
Application Code Logic Bug 60 50 10 80 69 11
ROS Node Communication Bug 29 27 2 27 25 2

System Configuration 27 27 0 69 66 3
Improper Operating System Configuration 14 14 0 26 25 1
Improper ROS Configuration 13 13 0 43 41 2

Total 135 123 12 263 241 22

Modeling (IPM). UPC means that the developers do not fore-

see some environment conditions that break the assumptions of

the development of the robotic system. In the dataset, there are

a total of 13 UPC bug cases, with 2 occurring in Robust and 11

in ARSB. For example, a bug case (report ID 0416c81[2]) in

the Kobuki project reports that the robot does not move when

it is expected to move to a specific location, for example for

charging, with a low speed that is set in a configuration file.

The default speed setting works most of the time, but may

cause a fault when the robot carries such a heavy load that it

cannot overcome the friction. IPM means that the developers

provide an incorrect environment model that makes the robot

malfunction. There are 34 IPM bug cases in the dataset, with

4 in Robust and 30 in ARSB. For example, a bug case (report

ID 21b86f6 [4]) in the universal robot project is related to the

URDF (Unified Robot Description Format) model, which is

an XML format for describing a robot model. In this case the

dimension of the robot arm in the UDRF model does not reflect

the real dimension, thus the planned movement trajectory is

wrong.

Hardware Usage. Root causes related to hardware usage

include two types, i.e., hardware malfunction and hardware

misuse. Hardware malfunction means that hardware compo-

nents fail or work incorrectly. There are 24 hardware mal-

function bug cases in the dataset, with 1 in Robust and 23

in ARSB. For example, a bug case (ID 606b8b9[7]) in the

Kobuki project. In this case the USB serial cable is unplugged

and then the Kobuki driver’s node crashes. This fault is also

related to the implementation of the node: it tries to read data

from the Bluetooth interface when USB is unplugged, thus a

crash may occur under certain conditions. Hardware misuse

means that the developers use specific hardware components

in a wrong way. There are 35 hardware misuse bug cases in

the dataset, with 12 in Robust and 23 in ARSB. For example,

a bug case (issue ID 89145c4[8]) in the universal robot project

reports that the multi-axis robot arm collides with itself. The

cause for the bug is that the developers put an improper limit

on the elbow joint and thus the arm may cross through the

collision zone.

Software Implementation. Root causes related to software

implementation include two types, i.e., application logic bug

and ROS node communication bug. Application logic bugs are

general software bugs in robotic systems, e.g., concurrency

bugs, API misuse, numerical calculation bugs. There are 140

application logic bugs in the dataset, with 60 in Robust and

80 in ARSB. For example, a bug case (issue ID 1c141a5[3])

in the Kuboki project reports that the robot is supposed to

move forward but instead moves backwards. The cause for

the bug is that the direction of the linear velocity is wrong

after a conversion from floating number to short integer.

ROS node communication bugs usually lie in incorrect data

transmission or control in node communication. There are

56 ROS node communication bugs in the dataset, with 29

in Robust and 27 in ARSB. For example, a bug case (issue

ID 594978d[6]) in the Mavros project reports that the robot

behaves in an unintended way. The cause for the bug lies in

missing information in the packet header. As the information

indicates the beginning of the packet, the receiving node will

skip the package if the information is missing.

System Configuration. Root causes related to system con-

figuration include two types, i.e., Improper Operating Sys-

tem Configuration (IOSC) and Improper ROS Configuration

(IROC). IOSC means an incorrect configuration in the operat-

ing system (e.g., Ubuntu) of the robotic system. There are 40

IOSC bug cases in the dataset, with 14 in Robust and 26 in

ARSB. For example, a bug case (issue ID 0000000[1]) in the

Care-O-Bot project reports that the motor for the tray is not

moving. The cause for the bug is that the specific ROS pack-

ages deployed on the operating system are outdated. IROC

means an incorrect configuration in ROS. ROS-based robotic

systems typically use ROS configurations to register hardware

devices and application nodes, and establish communications

between different nodes. Improper ROS configurations may

lead to hardware or node failures or faulty communications

between nodes. There are 56 IROC bug cases in the dataset,

with 13 in Robust and 43 in ARSB. For example, a bug case

(issue ID 3e32933[5]) in the TurtleBot project reports that

image processing does not receive data. The cause for the

bug lies in a wrong topic remapping in the launch file (an

XML file specifying system node information, parameters, and

212

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 20,2024 at 09:03:44 UTC from IEEE Xplore. Restrictions apply.

remappings), which makes the sensor node publish messages

with a wrong topic.

3) Overall Impact: In Table III, we list the number of

bug cases, which are roughly labelled malfunction and perfor-

mance degradation according to their impacts. Significantly,

the number of malfunction (364) is much more than the one

of performance degradation (34).

Malfunction. Malfunction (Malf in Table III) refers to the

unexpected behavior of a robotic system, where the system

deviates from its intended function or fails to perform its task

altogether. From Table III, it is evident that all categories of

root causes are highly likely to result in malfunction.

The category, physical environment interaction, has 44 bug

cases causing malfunction, consisting of 11 UPC and 33 IPM

bug cases. Both UPC and IPM bug cases cause a robotic

system to have an incorrect perception of the real world,

leading to erroneous behavior. In UPC case ARSB-8, the

robotic system encounters electromagnetic interference from

other electronic devices, such as the paging devices used by

hotel staff, resulting in uncontrolled robot motion. Obviously

the developers have no experiences about interfering signals

in a physical environment.

The category, hardware usage, has 56 bug cases causing

malfunction, consisting of 23 hardware malfunction and 33

hardware misuse bug cases. Hardware malfunction bugs can

prevent a robotic system from executing tasks, whereas hard-

ware misuse can cause malfunction by an incorrect under-

standing of the hardware and lead the robotic system to

perform tasks that violate hardware constraints. For example,

in hardware misuse bug case ARSB-11, the robotic system

was using the serial line to communicate with the Kobuki base,

but the serial.write() method was not concurrently protected,

resulting in the Kobuki node receiving dirty data and moving

incorrectly.

The category, software implementation, has 171 bug cases

causing malfunction, consisting of 119 application logic and

52 ROS node communication bug cases. Application logic bug

is a classic cause of malfunction in typical software systems,

and ROS node communication bugs that cause interrupted

interaction between nodes in robotic systems can further lead

to malfunction. For instance, in ROS node communication

bug case ARSB-13, after replacing the robot base with a

new version, outdated communication parameters were used

to communicate with its nodes, resulting in the robot be-

ing unable to move. We have further discovered that many

software implementation bugs that might cause performance

degradation in traditional software systems can directly result

in malfunction in robots. For instance, we found that 93.47%

of memory leaks directly caused malfunction in robots. We

attribute this to the limited computing capabilities of robot

systems, which typically use embedded chips and communi-

cate via IoT protocols or serial ports, leading to a constraint

in available computing resources and data transmission capa-

bilities.

The category, system configuration, has 93 bug cases caus-

ing malfunction, consisting of 39 IOSC and 54 IROC bug

cases. IOSC can interrupt the functionality of a robot due

to unexpected system environment factors, such as missing

runtime dependencies or unsynchronized distributed clocks.

IROC can cause errors in default parameters for robot nodes

and disrupt the subscription relationships between nodes. For

example, incorrect resource path configurations can cause the

robot’s expression playback node to fail to play the correct

interactive expressions, while incorrect node subscription re-

lationships can cause some nodes to become unresponsive.

Performance Degradation. From Table III, it is evident

that all categories of root cause can lead to performance

degradation (PerfD in Table III). The Software Implementation

category has a major count (59.09%), with 11 cases falling

under the Application Code Logic Bug type and two cases

under ROS Node Communication Bug type. Further analysis

revealed that concurrency issues, handle leaks, and planning

algorithms are the most common types of bugs that cause

performance degradation in application code logic bug type.

For example, in the ASRB-187 bug case, the robot’s planning

algorithm suffered from particle dispersion, which refers to

the phenomenon where simulated particles, such as those

used in path planning algorithms, begin to move away from

each other due to various factors, including noise, errors in

sensing or modeling, or imperfect algorithms. This can lead

to suboptimal path planning, which can negatively impact a

robot’s performance by making it take longer to reach its

intended destination or even cause the robot to fail to complete

its task.

There are three bug cases in the hardware usage category

that caused performance degradation, including one hardware

malfunction case and two hardware misuse cases. For example,

in hardware malfunction case ARSB-50, the robot needs to

communicate with the elevator and open its doors. However,

the communication equipment in the elevator is worn out,

leading to unresponsive feedback. As a result, the robot needs

to request entry into the elevator more times than usual.

There are three bug cases in the physical environment

interaction category that caused performance degradation, in-

cluding one UPC case and two IPM cases. For instance, in IPM

case ARSB-86, noise in the environment during the modeling

process resulted in the robot spending more time localizing its

position in the real world, leading to performance degradation.

There are three bug cases in the system configuration

category that caused performance degradation, including one

IOSC case and two IROC cases. For example, in IOSC case

ARSB-73, the robot needs to interact with the visual module

and create real-time obstacle avoidance plans. However, due

to an incorrect configuration of the NetworkManager in the

operating system, the network communication is unstable,

causing the robot’s behavior to become sluggish.
4) Summary: We manually analyze bugs from dataset RO-

BUST and ARSB. Results show that characteristics of bugs

agree with that robotic system is a type of software-hardware

integrated system. Hence fault diagnosis for robotic systems

is of challenge.

• Robotic system bugs have very diverse root causes in

213

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 20,2024 at 09:03:44 UTC from IEEE Xplore. Restrictions apply.

different levels of the system, including environment in-

teraction, hardware usage, software implementation, and

system configuration.

• Robotic system bugs may cause both malfunction and

performance degradation of the robots. Furthermore, due

to the limited computing resources of a robot, most bugs

will directly impact the robot’s functionality.

• Bugs rooted in different levels may have similar symp-

toms from the perspective of users. Therefore, it is

necessary to combine observability data from different

levels for fault diagnosis in robotic systems.

B. Fault Diagnosis Study (RQ2)

In the fault diagnosis study, we examine whether and how

a participant successfully accomplishes a fault diagnosis task.

In particular, we are concerned about how observability data

(i.e., logs, traces, trajectories) is used in fault diagnosis.

1) Participants: We have recruited 5 graduate students in

our department. Four (P2-P5) have worked on robotic systems

and the other one (P1) on CPSs for at least two years. They all

have over 3 years’ programming experience. All are very good

at debugging programs with logs. Four (P2-P5) can utilize

trajectories to understand behaviours of a robotic system. They

all have learned distributed tracing in a course, but without

much practical experience.

There is apparent skills gap between our participants and

software engineers from industry. To make our evaluation as

sound as possible, we build two more extra bugs in the food

delivering system so that participants can exercise their skills

to use diagnosis methods without time budget.

2) Overview: As designed, we have 5 participants and 23

replicated bugs, leading to 115 fault analysis tasks (5*23).

In the study we evaluate the 5 participants on all the 23

reproduced bugs, i.e., each participant is asked to diagnose

all the 23 reproduced failures. In total we need to conduct

5*23=115 experiments. To reduce the total time, we setup

five simulation environments and 1 real world robot for

experiments such that they can be performed parallel. Overall,

it takes a half month to complete those experiments.

��

��

��

��

��

�� �� �� �� �� �	 �
 �� �� ��
 ��� ��� ��� ��� ��� ��	 ��
 ��� ��� ��

������������������ �������������������� ������ ���������������������!�"�����

��� ��� ���

Fig. 1: Fault Diagnosis Study Results

Figure 1 shows the results of the fault diagnosis study,

where X-axis denotes the bug cases (B1-B23) and Y-axis

denotes the participants (P1-P5). It shows whether and how the

participants accomplishes their fault diagnosis tasks: white box

means that the participant fails to accomplish the task in the

given time; light grey means that the participant accomplishes

the task with logs; dark grey means that the participant

accomplishes the task with logs and traces; dotted grey means

that the participant accomplishes the task with logs, traces,

and trajectories.

There are 84 successful tasks out of total 115. Among

the 84 successful ones, 28 (33.33%) use log-based analysis,

49 (58.33%) further use trace-based analysis, and 7 (8.33%)

further use trajectory-based analysis. Without no surprise, P1

perform the worst in this evaluation. As a representative of

novice developers for robotic systems, P1 accomplishes 13

tasks, more than half of all. It may reveal that diagnosis

methods based on observability data can help developers with

little experience to debug robotic systems effectively.

To understand how different kinds of observability data

complement each other, we further investigate the fault di-

agnosis processes of different tasks.

3) Log-based Analysis: As shown in the results, for a

significant amount of tasks (28 tasks), the participants identify

the root causes by only analyzing the logs. For the bug

cases B12 and B13, all the successful fault diagnosis tasks

are accomplished by only analyzing the logs. This is kind

of reasonable since logs contain rich runtime information

about a fault that is helpful to fault analysis. Meanwhile, a

robotic system is distributed and involves multiple nodes in

the execution and it is often insufficient to localize the root

cause of a fault only with logs. To understand why the log-

based analysis is so successful for B12 and B13, we further

investigate the symptom details of the bugs and their fault

diagnosis processes.

Bug Case B12. For this case, all the participants success-

fully localize its root cause using log-based analysis. This bug

is caused by the incorrect version of a library involved in the

execution. Specifically, the ROS system requires a pyYAML

library with above 5.0 version to load YAML file, but is

provided with a version 3.1.2 pyYAML library. Based on the

error message in logs “AttributeError: ‘module’ object has

no attribute ‘FullLoader”’, one easily identifies it as a wrong

version problem.

Bug Case B13. This is a configuration error as well. The

ROS system uses a model to describe hardware components

and objects in the physical world and needs to load the de-

scription file of a hardware component or object. In this case,

the path of the description file of the radar is misconfigured,

causing a system crash. The error message in the logs shows

that the model construction fails when the system is launched.

This information often leads to a further investigation of

the logs for checking the status of involved components. By

analyzing the logs, the problematic radar modular can be

identified.

4) Trace-based Analysis: In trace-based analysis, the par-

ticipants are provided with one more kind of observability

data, i.e., trace data generated by distributed tracing during

system execution. As shown in the results above, when trace

data is available, the participants successfully accomplish 49

more tasks (out of 87 tasks for which they fail using log-based

analysis). That is, trace data significantly improves the success

rate of root cause localization in robotic system, around 175%

(49/28). To understand the reasons behind the impressive

214

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 20,2024 at 09:03:44 UTC from IEEE Xplore. Restrictions apply.

results, we further investigate the analysis processes of the

49 tasks. Here are two typical examples showing how trace

data contributes to fault diagnosis in robotic systems.

Bug Case B11. In the robotic system, multiple nodes

are involved when a robot moving. One of nodes called

velocity smoother is used to control the speed of the robot

and make it move smoothly. If this node is not involved in the

execution, the robot moves in a clumsy manner. In this case,

the speed setting is not sent to the velocity smoother node for

smoothing before it is sent to the chassis, causing the robot

moving in a clumsy way. It is sort of challenging to localize

its root cause by analyzing logs. As described by a participant,

he checks the logs of each node and it seems that all nodes

work well, so he fails to localize the root cause. When

entering the trace-based analysis, he quickly identifies the root

cause by checking the traces. Within his experience, the node

velocity smoother typically follows move base (a movement

planning module in ROS) in the execution. However, the traces

show that velocity smoother is not involved in the execution.

With this observation, he further analyzes the logs generated

in the related nodes and successfully localize the root cause

of the fault.

Bug Case B10. This bug is related to the robot movement

modular as well. It is caused by that one of variables in the

module is not initialized. The uninitialized variable results in

that the navigation module is unable to use the global coor-

dinate system in the planning. Without the global coordinate

system, the robot moves in a circle instead of moving to the

target. It is difficult to diagnose this issue by only checking the

logs since the information about the uninitialized variable does

not appear in the recent logs. When trace data is available, the

participants can analyze the linked logs and track back the

execution to identify its root cause.

5) Trajectory-based analysis: As robots often interact with

the physical world, analyzing trajectory data helps fault lo-

calization in the robotic system. As shown in the results,

when trajectory data is available, the participants successfully

localize the root causes for seven more tasks (out of the

remaining 38 tasks). This indicates that trajectory data can

further improve the success rate of fault diagnosis in the

robotic system. To understand how trajectory data contributes

to fault diagnosis, we investigate the analysis processes of

the seven tasks. Here are two bug cases that are successfully

diagnosed using trajectory-based analysis.

Bug Case B18. The problem arises when a robot is going

through an open door. The robot is supposed to go through

the door and reach the target location. However, it stops at

the front of the door. This is because the robot considers this

door is too narrow to go through. Actually, the door is wide

enough for the robot to go through. The reason for this is

that the parameter of the expansion layer is misconfigured.

The expansion layer is a safety distance between a robot and

obstacles, which ensures that the robot can go around the

obstacles without crashing. In this case, the expansion layer

is configured with a too large value such that the robot fails

to go through the door. Thus, it is difficult to diagnose this

issue by analyzing logs and traces. When trajectory data is

available, three of the five participants successfully localize

the root cause.

Bug Case B19. This bug is caused by improper modeling

of the physical world. In this case, a robot starts from its

original position in the model and is supposed to move to a

target location. However, it remains still and does not move

forward. The reason is that the robot stands towards a wall

with its back towards open ground, but the model tells that

its back is towards a wall. Thus, the robot cannot turn back

and move to the target as there is a “wall” behind it in the

model. As described, this bug is closely related to the physical

environment and it is difficult to diagnose without trajectory

data.
6) Special Cases: For some bug cases the participants

localize the root causes in different ways, for example using

log-based analysis or trace-based analysis. They are B2, B3,

B4, B15, and B17. Our analysis shows that the participants

using simpler analysis (e.g., log-based analysis only) usually

have priori knowledge on the bug. For example, for B17 two

participants (P4, P5) succeed with only log-based analysis,

while another two (P2, P3) succeed by further using trace-

based analysis. This bug case reports that the robot suddenly

stops when it moves to a location for charging. It is caused by

that the speed setting in the configuration is too small to make

the robot overcome the friction when carrying a heavy load.

Based on their feedback, we know that P4 and P5 have some

knowledge about the speed setting and thus directly choose

to check the logs of the component for moving control for

charging; while P2 and P3 do not have the knowledge and

thus choose to go through the traces to identify where the

speed of the robot for charging is set.

There is one bug case (B1) for which all the participants fail

to identify the root cause. This bug case reports that the robot

wobbles when moving. The root cause lies in an incorrect

setting of the robot’s mass centre in the URDF (Unified Robot

Description Format) file. This setting is important for the

balance control of the robot. This bug is common when the

moving control software is migrated to a robot of different

model that has different mass centre, for example due to

the different position of the battery. This bug does not cause

explicit anomalies in the logs, traces, or trajectories. Moreover,

different from B17 where the relationship between speed and

friction is well known, the relationship between mass centre

and posture control is not known for the participants. Two

participants guess that the problem is related to the URDF

file, but they lack the required knowledge to identify the root

cause, i.e., the setting of mass centre.
7) Summary: The experiments show that collected observ-

ability data help participants succeed in diagnosing fault of

robotic systems. They play different roles in fault diagnosis.

Success ratio of diagnosis could be improved with proper

combination of them.

• Logs are fundamental for fault diagnosis in robotic sys-

tems, which can provide detailed information. Log-based

fault diagnosis succeeds when the root causes are not

215

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 20,2024 at 09:03:44 UTC from IEEE Xplore. Restrictions apply.

far from where the faults are detected, in which local

information is enough for diagnosis.

• Traces are good at linking together logs generated in

different nodes. Hence they play a key role in finding

nodes related to a fault and information exchanged among

them, which help developer narrow down search for fault

diagnosis.

• Trajectory data help us understand how robots sense the

world and behave continuously. Therefore trajectory plays

a key role when faults involve physical environments.

• It is rare that some complex bugs can be diagnosed suc-

cessfully with only logs if developers just have specific

background knowledge about those bugs.

• Some bugs cannot be diagnosed even by combining all

of logs, traces, and trajectories. They involve complex

background knowledge and observability data available

now show no explicit anomalies.

V. THREATS TO VALIDITY

A major threat to the internal validity lies in the subjective

judgment in the bug case analysis. The classifications of root

causes and impacts are conducted based on the understanding

of the annotators. For minimizing the threat, we try to collect

sufficient information for the annotators, including issue de-

scriptions, follow-up discussions, fix commits and source code.

Moreover, we follow commonly used data analysis techniques

by involving multiple annotators and conflict resolution and

reporting agreement coefficients. Another major threat to the

internal validity lies in the differences of the participants in

their experience and capability in the fault diagnosis study.

To alleviate the threat, we conduct qualitative analysis on

their fault diagnosis processes to understand the usefulness

of different kinds of observability data and make our findings

back on the analysis of concrete cases.

Threats to the external validity mainly lie in the repre-

sentativeness and coverage of different kinds of bugs in real

robotic systems. Our empirical study is based on a set of bug

cases collected from the issues of robotic software projects,

which may not cover robotic system faults that are caused by

hardware or physical environment. To alleviate the threat, we

add some bug cases collected from industrial robotic systems

in the fault diagnosis study. The robotic application used in the

fault diagnosis study is small and covers a limited number of

different robots and their functionalities. Therefore, our find-

ings may not be generalized to more complex robotic systems

in industry. Another threat comes from what observability data

we collect. Some data is critical to analyze robotic fault, which

can determine whether our diagnosis is successful or not. In

practice, the infrastructure can only collect limited capacity

of predetermined data. How to determine the set of collected

data is another research problem with limited budget.

VI. RELATED WORK

A typical robotic system consists of many heterogeneous

hardware and software components with complex interactions

between them. A survey [70] shows that most robotics systems

frequently contain failures. Some work try to understand

bugs in specific robotic area and general CPSs, including

dependency bugs in ROS [29], configuration bugs in swarm

drones [41], characterization of software bugs in open-source

CPS [77] and of safety concerns in UAV software plat-

forms [28], and a comprehensive study of autonomous vehicle

bugs [30]. Malavolta et al. [50], [51] empirically study

architectures of ROS-based systems and summarized 47 archi-

tecture guidelines for developers to write correct ROS-based

programs. Specifically, based on the analysis of root causes

of bugs in robotic navigation system, Bug Algorithms [52]

are proposed to handle uncertainties of the environment and

hardware components. This paper studies bug characterization

from the perspective of observability, as a helpful supplement

to previous work.

With understanding of bug characterization, RoboFuzz [46]

is proposed to employs fuzzing techniques to find bugs in

ROS-based robotic systems. SWARMBUG [41] is also proposed

to automatically detect and fix configuration bugs in swarm

robotics. We investigate how different kinds of observability

data could help diagnose runtime faults of robotic systems.

ROS provides a generic logging functionality [60] and a

tool rosbag [63] to sample messages. However, messages

cannot practically convey the stacktrace-level of detail and the

detailed execution context information [24]. A multipurpose

framework ros2 tracing [24] is proposed for ROS 2 to fill

this gap. ros2 tracing instruments the source code of ROS

2 and allows extracting simple metrics, such as publishing

rate and callback duration. It is applied to analyze, debug

and optimize perception and mapping subsystems in ROS

2 [47]. Autowre Perf is built upon ros2 tracing with an

improvement that arbitrary nodes can be selected for instru-

mentation. RAPLET [56] is another real time instrumentation

tool for binary compatibility based on the dynamic linker’s

LD PRELOAD environment variable. To debug large multi-

robot systems, De Rosa et al. [26] develop a technique

distributed watchpoint triggers to recognize distributed condi-

tions, which help us understand behaviors of robotic systems.

To collect complicated runtime information, we rely on a more

general monitoring system. Stadler et. al. [68] summarized

monitoring challenges and proposed an architecture towards

flexible runtime monitoring system support ROS application.

Specially, the changes of a message [75] can also be tracked

with a monitoring system.

Furthermore, multimodal data [58], sensed by robots or

external sensors, are employed to extract more information.

Typical debugging techniques, such as printf or log files,

are not good at handling complex data types, such as radar

signals and video streams. A visualization tool rviz [64] can

interpret and display complex data in a way that developers

understand easily. A more general visualization system named

Rviz [42] accepts arbitrary data structures and algorithms.

Basurto et al. [23] also propose a visual tool for moni-

toring and detecting anomalies in robot performance. Ikeda

and Szafir [40] explore various design approaches towards

such visualizations for robotics debugging support, especially

216

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 20,2024 at 09:03:44 UTC from IEEE Xplore. Restrictions apply.

including emerging immersive three-dimensional augmented

reality.

Data are collected and managed for further analysis. For

distributed logs, He [38] proposes an end-to-end manage-

ment framework. Bédard et al. [25] design a tool based

on ros2 tracing to keep complex causal links in message

flow. Similarly, we instrument the source code generated for

specific topic messages, manually set tracepoints for ROS

and applications, and collect traces by Zipkin [20]. Then, we

analyze and understand behaviors of a robotic system with

managed data. A tool Horus [54] can analyze root cause from

distributed logs. Especially, it is possible to diagnose a fault

automatically, for a robotic system can be characterized by

models specified by human or automatically discovered [22].

Then an expectation for the robot’s behavior can be quickly

predicated with an input (e.g., instruction) and its model. ROS

has integrated a simple diagnostic system [62]. However, it

only works for simple hardware devices. Based on diagnostic

stack of ROS, Zaman et. al. [76] propose an online diagnosis

and repair system for robotic systems, in which models and

action rules are described using first order logic sentences.

Khalastchi and Kalech [44] make a survey on fault de-

tection and diagnosis from characteristics of robotic systems

and analyz the advantages and disadvantages of existing

approaches, which are divide into three typical categories:

data-driven, model-based, and knowledge-based. Model-based

approaches [37], [69], [76] exploit an explicit a prior model.

Data-driven approaches [32], [39] are model free and are

able to handle unknown faults. They apply various analysis

methods , in machine learning and statistics, on collected

data of a robotic system to infer results. Obviously, they

all heavily depends on online monitoring systems [58], [74],

[75]. Knowledge-based approaches [36], [59] mimic a human

expert, which associates recognized behaviors with predefined

known faults and diagnosis. Mitrevski et al. [53] address how

to utilize knowledge about the execution process to direct the

diagnosis and experience acquisition process. Furthermore, it

is possible for knowledge-based approach to combine model-

based and data-driven approaches into a hybrid approach [45],

[59].

It is costly and inefficient to develop robotic systems

with real robots. Simulator plays a important role in the

development process. Timperley et al. [71] disclose that the

majority of bugs can be reproduced using software-in-the-loop

simulation approaches without the need for complex triggering

mechanisms. However, the environment is too complex. A

robotic system runs in the nondeterministic physical world,

e.g., movements are guided by motion planning [34] based

on sensing uncertainties [33]. Stein and Elbaum [72] propose

an approach to automatically reduce the key elements of

the environment associated with identified failures, which are

critical for faster fault isolation and, ultimately, debugging

those failures. A simulator is also used to control or simulate

uncertainties in the environment for the developing robotic

system. There are several mainstreaming open source simula-

tors, such as Gazebo [31], Webots [73], and Robogym [57].

For specific purpose, developers may develop a particular

simulator, e.g., iGibson 2 [49] is an open-source simulation

environment for household tasks.

VII. CONCLUSION AND DISCUSSION

In this paper, we conduct an empirical study on fault diag-

nosis in robotic systems from the perspective of observability.

The study includes a bug case analysis to understand the

characteristics of robotic system bugs and a fault diagnosis

study to analyze the fault diagnosis processes of a set of

replicated bugs. The results indicate the effectiveness of traces

and trajectory data and the necessity of combining different

kinds of observability data for fault diagnosis in robotic

systems.

Our study in this paper promotes the vision of observability-

based fault diagnosis in robotic systems. In modern cloud-

based systems such as microservice systems, it has been com-

mon to deploy observability infrastructures such as distributed

tracing systems and combine different kinds of observability

data such as logs, traces, and metrics for anomaly detection

and fault localization [48], [78], [79]. For robotic systems,

it is necessary to further combine physical world related

monitoring data, e.g., status of hardware components and

physical interactions with the environments, to construct a

unified observability platform. The platform can be used

to support the anomaly detection, fault diagnosis, and even

runtime repairing of robots. The main challenge lies in the

effective and efficient fusion of different kinds of observability

data, especially observability data reflecting the status and

behaviors of software components, hardware components, and

physical environments. In future work, we will investigate

software infrastructures and tools for the collection, analysis,

and visualization of observability data of robotic systems and

further explore the combination of the observability infrastruc-

tures and tools with robotic digital twin platforms for more

effective operation management of robotic systems.

ACKNOWLEDGMENT

We wish to thank deeply Tianyi Chen, Zhengming Zhang,

Jingyuan Hao, and Hui Li for developing the food delivery

system. The authors would also like to thank the anonymous

referees for their valuable comments and helpful suggestions.

This work is supported by Shanghai Municipal Science and

Technology Major Project (No.2021SHZDZX0103).

REFERENCES

[1] “0000000,” https://github.com/robust-rosin/robust/blob/master/
care-o-bot/0000000/0000000.bug, 2022, accessed: 2022-10-22.

[2] “0416c81,” https://github.com/robust-rosin/robust/blob/master/kobuki/
0416c81/0416c81.bug, 2022, accessed: 2022-10-22.

[3] “1c141a5,” https://github.com/robust-rosin/robust/blob/master/kobuki/
1c141a5/1c141a5.bug, 2022, accessed: 2022-10-22.

[4] “21b86f6,” https://github.com/robust-rosin/robust/blob/master/
universal robot/21b86f6/21b86f6.bug, 2022, accessed: 2022-10-22.

[5] “3e32933,” https://github.com/robust-rosin/robust/blob/master/turtlebot/
3e32933/3e32933.bug, 2022, accessed: 2022-10-22.

[6] “594978d,” https://github.com/robust-rosin/robust/blob/master/mavros/
594978d/594978d.bug, 2022, accessed: 2022-10-22.

[7] “606b8b9,” https://github.com/robust-rosin/robust/blob/master/kobuki/
606b8b9/606b8b9.bug, 2022, accessed: 2022-10-22.

217

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 20,2024 at 09:03:44 UTC from IEEE Xplore. Restrictions apply.

[8] “89145c4,” https://github.com/robust-rosin/robust/blob/master/
universal robot/89145c4/89145c4.bug, 2022, accessed: 2022-10-22.

[9] “Apache skywalking,” https://skywalking.apache.org/, 2022, accessed:
2022-10-22.

[10] “Care-o-bot,” https://github.com/ipa320/cob robots, 2022, accessed:
2022-10-22.

[11] “geometry2,” https://github.com/ros/geometry2, 2022, accessed: 2022-
10-22.

[12] “Jaegertracing,” https://www.jaegertracing.io/, 2022, accessed: 2022-10-
22.

[13] “Kobuki,” https://github.com/yujinrobot/kobuki, 2022, accessed: 2022-
10-22.

[14] “Mavros,” https://github.com/mavlink/mavros, 2022, accessed: 2022-10-
22.

[15] “Motoman,” https://github.com/ros-industrial/motoman, 2022, accessed:
2022-10-22.

[16] “Opentracing specification,” https://opentracing.io/specification/, 2022,
accessed: 2022-11-10.

[17] “Robust,” https://github.com/robust-rosin/robust, 2022, accessed: 2022-
10-30.

[18] “Turtlebot,” https://github.com/turtlebot/turtlebot, 2022, accessed: 2022-
10-22.

[19] “Universal robot,” https://github.com/ros-industrial/universal robot,
2022, accessed: 2022-10-22.

[20] “Zipkin,” https://zipkin.io/, 2022, accessed: 2022-08-22.
[21] A. Ahmad and M. A. Babar, “Software architectures for robotic systems:

A systematic mapping study,” J. Syst. Softw., vol. 122, pp. 16–39, 2016.
[22] J. Aldrich, D. Garlan, C. Kästner, C. L. Goues, A. Mohseni-Kabir,

I. Ruchkin, S. Samuel, B. R. Schmerl, C. S. Timperley, M. Veloso,
I. Voysey, J. Biswas, A. Guha, J. Holtz, J. Cámara, and P. Jamshidi,
“Model-based adaptation for robotics software,” IEEE Software, vol. 36,
no. 2, pp. 83–90, 2019.

[23] N. Basurto, C. Cambra, and Á. Herrero, “A visual tool for monitoring
and detecting anomalies in robot performance,” Pattern Anal. Appl.,
vol. 25, no. 2, pp. 271–283, 2022.

[24] C. Bédard, I. Lütkebohle, and M. R. Dagenais, “ros2 tracing: Multipur-
pose low-overhead framework for real-time tracing of ROS 2,” IEEE
Robotics Autom. Lett., vol. 7, no. 3, pp. 6511–6518, 2022.

[25] ——, “ros2 tracing: Multipurpose low-overhead framework for real-
time tracing of ROS 2,” CoRR, vol. abs/2201.00393, 2022.

[26] M. De Rosa, J. Campbell, P. Pillai, S. C. Goldstein, P. Lee, and
T. C. Mowry, “Distributed watchpoints: Debugging large multi-robot
systems,” in 2007 IEEE International Conference on Robotics and
Automation, ICRA 2007, 10-14 April 2007, Roma, Italy. IEEE, 2007,
pp. 3723–3729.

[27] B. S. Dhillon, Robot Reliability and Safety. Springer New York, NY,
1991.

[28] A. Di Sorbo, F. Zampetti, A. Visaggio, M. Di Penta, and S. Panichella,
“Automated identification and qualitative characterization of safety con-
cerns reported in uav software platforms,” ACM Trans. Softw. Eng.
Methodol., vol. 32, no. 3, apr 2023.

[29] A. Fischer-Nielsen, Z. Fu, T. Su, and A. Wasowski, “The forgotten case
of the dependency bugs: on the example of the robot operating system,”
in ICSE-SEIP 2020: 42nd International Conference on Software Engi-
neering, Software Engineering in Practice, Seoul, South Korea, 27 June
- 19 July, 2020. ACM, 2020, pp. 21–30.

[30] J. Garcia, Y. Feng, J. Shen, S. Almanee, Y. Xia, and Q. A. Chen, “A
comprehensive study of autonomous vehicle bugs,” in ICSE ’20: 42nd
International Conference on Software Engineering, Seoul, South Korea,
27 June - 19 July, 2020, G. Rothermel and D. Bae, Eds. ACM, 2020,
pp. 385–396.

[31] Gazebo, “Gazebo,” https://www.gazebosim.org/, 2022.
[32] R. Golombek, S. Wrede, M. Hanheide, and M. Heckmann, “Online

data-driven fault detection for robotic systems,” in 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2011,
San Francisco, CA, USA, September 25-30, 2011. IEEE, 2011, pp.
3011–3016.

[33] A. González-Sieira, D. Cores, M. Mucientes, and A. Bugarı́n, “Au-
tonomous navigation for uavs managing motion and sensing uncer-
tainty,” Robotics Auton. Syst., vol. 126, p. 103455, 2020.

[34] A. González-Sieira, M. Mucientes, and A. Bugarı́n, “Graduated fidelity
lattices for motion planning under uncertainty,” in International Confer-
ence on Robotics and Automation, ICRA 2019, Montreal, QC, Canada,
May 20-24, 2019. IEEE, 2019, pp. 5908–5914.

[35] M. Gopal, Modern Control System Theory, second edition ed. Halsted
Press, New York, 1993.

[36] K. Hamilton, D. M. Lane, N. K. Taylor, and K. E. Brown, “Fault diag-
nosis on autonomous robotic vehicles with RECOVERY: an integrated
heterogeneous-knowledge approach,” in Proceedings of the 2001 IEEE
International Conference on Robotics and Automation, ICRA 2001, May
21-26, 2001, Seoul, Korea. IEEE, 2001, pp. 3232–3237.

[37] M. Hashimoto, H. Kawashima, and F. Oba, “A multi-model based fault
detection and diagnosis of internal sensors for mobile robot,” in 2003
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Las Vegas, Nevada, USA, October 27 - November 1, 2003. IEEE, 2003,
pp. 3787–3792.

[38] P. He, “An end-to-end log management framework for distributed
systems,” in 36th IEEE Symposium on Reliable Distributed Systems,
SRDS 2017, Hong Kong, Hong Kong, September 26-29, 2017. IEEE
Computer Society, 2017, pp. 266–267.

[39] V. J. Hodge and J. Austin, “A survey of outlier detection methodologies,”
Artif. Intell. Rev., vol. 22, no. 2, pp. 85–126, 2004.

[40] B. Ikeda and D. Szafir, “Advancing the design of visual debugging
tools for roboticists,” in ACM/IEEE International Conference on Human-
Robot Interaction, HRI 2022, Sapporo, Hokkaido, Japan, March 7 - 10,
2022, D. Sakamoto, A. Weiss, L. M. Hiatt, and M. Shiomi, Eds. IEEE
/ ACM, 2022, pp. 195–204.

[41] C. Jung, A. Ahad, J. Jung, S. G. Elbaum, and Y. Kwon, “Swarmbug:
debugging configuration bugs in swarm robotics,” in ESEC/FSE ’21:
29th ACM Joint European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, Athens, Greece,
August 23-28, 2021. ACM, 2021, pp. 868–880.

[42] H. R. Kam, S. Lee, T. Park, and C. Kim, “Rviz: a toolkit for real domain
data visualization,” Telecommun. Syst., vol. 60, no. 2, pp. 337–345,
2015. [Online]. Available: https://doi.org/10.1007/s11235-015-0034-5

[43] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[44] E. Khalastchi and M. Kalech, “On fault detection and diagnosis in
robotic systems,” ACM Comput. Surv., vol. 51, no. 1, jan 2018.

[45] ——, “A sensor-based approach for fault detection and diagnosis for
robotic systems,” Auton. Robots, vol. 42, no. 6, pp. 1231–1248, 2018.

[46] S. Kim and T. Kim, “Robofuzz: Fuzzing robotic systems over robot
operating system (ros) for finding correctness bugs,” in Proceedings of
the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ser. ESEC/FSE
2022. New York, NY, USA: Association for Computing Machinery,
2022, p. 447–458.

[47] P.-Y. Lajoie, C. Bédard, and G. Beltrame, “Analyze, debug, optimize:
Real-time tracing for perception and mapping systems in ros 2,” arXiv
preprint arXiv:2204.11778, 2022.

[48] B. Li, X. Peng, Q. Xiang, H. Wang, T. Xie, J. Sun, and X. Liu, “Enjoy
your observability: an industrial survey of microservice tracing and
analysis,” Empir. Softw. Eng., vol. 27, no. 1, p. 25, 2022.

[49] C. Li, F. Xia, R. Martı́n-Martı́n, M. Lingelbach, S. Srivastava, B. Shen,
K. E. Vainio, C. Gokmen, G. Dharan, T. Jain, A. Kurenkov, C. K. Liu,
H. Gweon, J. Wu, L. Fei-Fei, and S. Savarese, “igibson 2.0: Object-
centric simulation for robot learning of everyday household tasks,” in
Conference on Robot Learning, 8-11 November 2021, London, UK,
ser. Proceedings of Machine Learning Research, A. Faust, D. Hsu, and
G. Neumann, Eds., vol. 164. PMLR, 2021, pp. 455–465.

[50] I. Malavolta, G. A. Lewis, B. R. Schmerl, P. Lago, and D. Garlan, “How
do you architect your robots?: state of the practice and guidelines for
ros-based systems,” in ICSE-SEIP 2020: 42nd International Conference
on Software Engineering, Software Engineering in Practice, Seoul, South
Korea, 27 June - 19 July, 2020. ACM, 2020, pp. 31–40.

[51] ——, “Mining guidelines for architecting robotics software,” J. Syst.
Softw., vol. 178, p. 110969, 2021.

[52] K. N. McGuire, G. C. H. E. de Croon, and K. Tuyls, “A comparative
study of bug algorithms for robot navigation,” Robotics Auton. Syst.,
vol. 121, 2019.

[53] A. Mitrevski, P. G. Plöger, and G. Lakemeyer, “Robot action diagnosis
and experience correction by falsifying parameterised execution mod-
els,” in IEEE International Conference on Robotics and Automation,
ICRA 2021, Xi’an, China, May 30 - June 5, 2021. IEEE, 2021, pp.
11 025–11 031.

[54] F. Neves, N. Machado, R. Vilaça, and J. Pereira, “Horus: Non-intrusive
causal analysis of distributed systems logs,” in 51st Annual IEEE/IFIP

218

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 20,2024 at 09:03:44 UTC from IEEE Xplore. Restrictions apply.

International Conference on Dependable Systems and Networks, DSN
2021, Taipei, Taiwan, June 21-24, 2021. IEEE, 2021, pp. 212–223.

[55] S. Niedermaier, F. Koetter, A. Freymann, and S. Wagner, “On observabil-
ity and monitoring of distributed systems - an industry interview study,”
in Service-Oriented Computing - 17th International Conference, ICSOC
2019, Toulouse, France, October 28-31, 2019, Proceedings, ser. Lecture
Notes in Computer Science, S. Yangui, I. B. Rodriguez, K. Drira, and
Z. Tari, Eds., vol. 11895. Springer, 2019, pp. 36–52.

[56] K. Nishimura, T. Ishikawa, H. Sasaki, and S. Kato, “RAPLET: de-
mystifying publish/subscribe latency for ROS applications,” in 27th
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, RTCSA 2021, Houston, TX, USA, August 18-
20, 2021. IEEE, 2021, pp. 41–50.

[57] OpenAI, “Robogym,” https://github.com/openai/robogym, 2020.

[58] D. Park, Z. Erickson, T. Bhattacharjee, and C. C. Kemp, “Multimodal
execution monitoring for anomaly detection during robot manipulation,”
in 2016 IEEE International Conference on Robotics and Automation,
ICRA 2016, Stockholm, Sweden, May 16-21, 2016, D. Kragic, A. Bicchi,
and A. D. Luca, Eds. IEEE, 2016, pp. 407–414.

[59] O. Pettersson, “Execution monitoring in robotics: A survey,” Robotics
Auton. Syst., vol. 53, no. 2, pp. 73–88, 2005.

[60] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “Ros: an open-source robot operating system,”
in Open-Source Software workshop of the International Conference on
Robotics and Automation (ICRA), 2009.

[61] ROS, “ROS - robot operating system,” https://www.ros.org/, 2022.

[62] ROS WiKi, “diagnostic,” https://wiki.ros.org/diagnostics, 2022.

[63] ——, “rosbag,” http://wiki.ros.org/rosbag, 2022.

[64] ——, “rviz,” https://wiki.ros.org/rviz, 2022.

[65] J. Shin and J. Lee, “Fault detection and robust fault recovery control for
robot manipulators with actuator failures,” in 1999 IEEE International
Conference on Robotics and Automation, Marriott Hotel, Renaissance
Center, Detroit, Michigan, USA, May 10-15, 1999, Proceedings. IEEE
Robotics and Automation Society, 1999, pp. 861–866.

[66] B. Siciliano and O. Khatib, Eds., Springer Handbook of Robotics, ser.
Springer Handbooks. Springer, 2016.

[67] C. Sridharan, Distributed systems observability: a guide to building
robust systemsy. O’Reilly Media, Inc, 2018.

[68] M. Stadler, M. Vierhauser, and J. Cleland-Huang, “Towards flexible run-
time monitoring support for ros-based applications,” in 2022 IEEE/ACM
4th International Workshop on Robotics Software Engineering (RoSE).
Los Alamitos, CA, USA: IEEE Computer Society, may 2022, pp. 43–46.

[69] D. Stavrou, D. G. Eliades, C. G. Panayiotou, and M. M. Polycarpou,
“Fault detection for service mobile robots using model-based method,”
Auton. Robots, vol. 40, no. 2, pp. 383–394, 2016.

[70] G. Steinbauer, “A survey about faults of robots used in robocup,”
in RoboCup 2012: Robot Soccer World Cup XVI [papers from the
16th Annual RoboCup International Symposium, Mexico City, Mexico,
June 18-24, 2012], ser. Lecture Notes in Computer Science, vol. 7500.
Springer, 2012, pp. 344–355.

[71] C. S. Timperley, A. Afzal, D. S. Katz, J. M. Hernandez, and C. L. Goues,
“Crashing simulated planes is cheap: Can simulation detect robotics
bugs early?” in 11th IEEE International Conference on Software Testing,
Verification and Validation, ICST 2018, Västerås, Sweden, April 9-13,
2018. IEEE Computer Society, 2018, pp. 331–342.

[72] M. von Stein and S. G. Elbaum, “Automated environment reduction
for debugging robotic systems,” in IEEE International Conference on
Robotics and Automation, ICRA 2021, Xi’an, China, May 30 - June 5,
2021. IEEE, 2021, pp. 3985–3991.

[73] Webots, “Webots,” https://www.cyberbotics.com/, 2022.

[74] T. Witte and M. Tichy, “Inferred interactive controls through provenance
tracking of ROS message data,” in 3rd IEEE/ACM International Work-
shop on Robotics Software Engineering, RoSE@ICSE 2021, Madrid,
Spain, June 2, 2021. IEEE, 2021, pp. 67–74.

[75] ——, “Towards flexible runtime monitoring support for ROS-based
applications,” in 4rd IEEE/ACM International Workshop on Robotics
Software Engineering, RoSE@ICSE 2022, Pittsburgh, USA, May 9,
2022. IEEE, 2021, pp. 67–74.

[76] S. Zaman, G. Steinbauer, J. Maurer, P. Lepej, and S. Uran, “An
integrated model-based diagnosis and repair architecture for ros-based
robot systems,” in 2013 IEEE International Conference on Robotics and
Automation, Karlsruhe, Germany, May 6-10, 2013. IEEE, 2013, pp.
482–489.

[77] F. Zampetti, R. Kapur, M. D. Penta, and S. Panichella, “An empirical
characterization of software bugs in open-source cyber-physical sys-
tems,” J. Syst. Softw., vol. 192, p. 111425, 2022.

[78] C. Zhang, X. Peng, C. Sha, K. Zhang, Z. Fu, X. Wu, Q. Lin, and
D. Zhang, “Deeptralog: Trace-log combined microservice anomaly de-
tection through graph-based deep learning,” in 44th IEEE/ACM 44th
International Conference on Software Engineering, ICSE 2022, Pitts-
burgh, PA, USA, May 25-27, 2022. ACM, 2022, pp. 623–634.

[79] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Fault
analysis and debugging of microservice systems: Industrial survey,
benchmark system, and empirical study,” IEEE Trans. Software Eng.,
vol. 47, no. 2, pp. 243–260, 2021.

219

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 20,2024 at 09:03:44 UTC from IEEE Xplore. Restrictions apply.

