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ABSTRACT
Modern microservice systems have become increasingly compli-

cated due to the dynamic and complex interactions and runtime

environment. It leads to the system vulnerable to performance

issues caused by a variety of reasons, such as the runtime envi-

ronments, communications, coordinations, or implementations of

services. Traces record the detailed execution process of a request

through the system and have been widely used in performance

issues diagnosis in microservice systems. By identifying the execu-

tion processes and attribute value combinations that are common in

anomalous traces but rare in normal traces, engineers may localize

the root cause of a performance issue into a smaller scope. How-

ever, due to the complex structure of traces and the large number of

attribute combinations, it is challenging to find the root cause from

the huge search space. In this paper, we propose TraceContrast,

a trace-based multi-dimensional root cause localization approach.

TraceContrast uses a sequence representation to describe the com-

plex structure of a trace with attributes of each span. Based on the

representation, it combines contrast sequential pattern mining and

spectrum analysis to localize multi-dimensional root causes effi-

ciently. Experimental studies on a widely used microservice bench-

mark show that TraceContrast outperforms existing approaches

in both multi-dimensional and instance-dimensional root cause

localization with significant accuracy advantages. Moreover, Trace-

Contrast is efficient and its efficiency can be further improved by

parallel execution.
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1 INTRODUCTION
Microservice systems have gained popularity in recent years for

their ability to enhance scalability, flexibility, and agile iteration

capabilities in large-scale systems [48]. Industrial microservice sys-

tems typically consist of hundreds to thousands of services, with

each service having tens to thousands of independently deployed

instances that communicate with each other through lightweight

mechanisms [18]. Meanwhile, the fine-grained decomposition of

microservices makes the system vulnerable to performance issues.

To operate microservice systems reliably and with high uptime,

performance issues must be detected quickly and the root causes

pinpointed.

Performance issues in microservice systems are complicated due

to the dynamic and complex interactions and runtime environments

[48]. Microservice systems usually have complex invocation chains,

each invocation chainmay involve several components (e.g., service,

service instance, host) in the microservice system and the interac-

tion between these components (e.g., service invocation, database

invocation). Moreover, the systems are highly heterogeneous, such

as deploying multiple versions of services at the same time and run-

ning with different infrastructure configurations [48, 50]. It leads

to the multi-dimensional nature of the root causes of microservice

performance issues, which could be the runtime environments,

communications, coordinations, or implementations of services

[48]. Therefore, it is challenging to diagnose performance issues in

microservice systems. Nowadays, some monitoring infrastructures

(e.g., Loki [7], Prometheus [10]) can observe what happens in a

microservice instance (e.g., the error rate per minute), but they tell

us little about the fine-grained context of the interactions between

microservices.

To support fine-grained fault diagnosis in microservice systems,

distributed tracing has been widely adopted in industrial microser-

vice systems and becomes a part of their infrastructures [9, 13, 31].

Each trace describes the detailed execution process of a request

https://doi.org/10.1145/3597503.3639088
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through the system, and the details of each operation in it are de-

scribed by a structured log called a span. As the example shown in

the Figure 1, the trace describes the execution of a request, and the

attributes in span E record the detailed information about the oper-

ation, such as the URL of the API, service instance name, host name,

and length of the request content. Operation engineers and devel-

opers usually analyze the structure and attributes of the traces to

diagnose performance issues. By identifying the execution process

and attribute value combination that are common in anomalous

traces but rare in normal traces, engineers may localize the root

cause of a performance issue into a smaller scope. For example, if a

performance issue occurs due to a bug between a specific service

version (i.e., version𝑉 1 of 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐵) and a certain client service (i.e.,

𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐴). Then, engineers may find that a large number of traces

containing this invocation are anomalous. And the root cause of this

example can be represented as a sequence consisting of attribute

values < 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐴 → (𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐵,𝑉 1) >, which we call a multi-

dimensional root cause in this paper. However, due to the scale and

complexity of microservice systems, manual investigation of trace

data is tedious and inefficient for localizing the multi-dimensional

root cause.

The main challenge of multi-dimensional root cause localization

in microservice systems is the huge search space due to the complex

structure of traces and the large number of attribute combinations.

Existing multi-dimensional root cause localization approaches [5,

20, 22–24, 35, 38] represent telemetry data (e.g., logs, issue reports,

metrics) as multi-dimensional tabular data to search the root cause.

However, if we represent traces as multi-dimensional tabular data,

we will ignore the complex structures of traces, which leads to

an inability to locate performance issues related to the execution

path. Existing trace analysis approaches [3, 21, 26, 40, 47, 49] only

localize the root causes at the service/instance level, which ignores

the fact the multi-dimensional nature of microservice performance

issues.

To address the preceding challenges, we propose TraceContrast,

a multi-dimensional root cause localization approach for perfor-

mance issues in microservice systems. TraceContrast aims to find

the specific execution process and attribute value combination that

are common in anomalous traces but rare in normal traces which

are more like the multi-dimensional root cause. TraceContrast uses

a sequence representation to describe the complex structure of a

trace with the attributes of each span. Such representation enables

us to combine contrast sequential pattern mining and spectrum

analysis to achieve high-efficient multi-dimensional root cause lo-

calization. Specifically, TraceContrast first extracts the critical path

from each trace and represents it as an event sequence. Then it

detects which critical paths are affected by the performance issue.

Based on the anomaly and normal critical paths, TraceContrast

mine candidate multi-dimensional root causes based on a parallel

contrast sequential pattern mining algorithm. Finally, TraceCon-

trast ranks candidate root causes based on a spectrum formula

and removes the redundant root causes by combining the domain

knowledge of microservice systems.

To evaluate the accuracy and efficiency of TraceContrast, we

conduct a series of experimental studies on a medium-scale mi-

croservice benchmark system. The result shows that TraceContrast

outperforms existing trace-based root cause localization approaches

Figure 1: An Example of Trace and Span Log

Figure 2: An Example of Multi-Dimensional Root Cause in
Microservice Systems

by 195.3% and 101.2% on average in terms of top-5 hit ratio in

multi-dimensional and instance dimensional root cause localiza-

tion respectively. Moreover, the experimental result confirms the

efficiency of TraceContrast and shows that our approach is scalable

with the provided computing resources.

2 BACKGROUND AND MOTIVATION
2.1 Background
When a microservice system receives a request, the execution pro-

cess can involve multiple components in the system. In order to

understand and analyze the execution process, it is important to

trace and record the end-to-end execution process of each request.

To achieve this, distributed tracing has become a widely adopted

technique in microservice systems [19]. Distributed tracing is an

approach used to profile and monitor distributed systems, which

record the end-to-end execution process of a request as a set of

structured logs. There are a growing number of industry and open-

source distributed tracing frameworks, such as Dapper [31], Zipkin

[34], OpenTelemetry [9], and SkyWalking [32]. Distributed tracing

frameworks typically support manual or automatic instrumenta-

tion for each service instance, and when the instrumentation point

is triggered, a log is generated to record information about this

invocation. These logs are then collected by the distributed tracing

framework to reconstruct the complete traces for further analysis.

According to the OpenTelemetry specification, a trace consists

of one or more spans and can be represented as a directed acyclic

graph [9]. Each span is a structured log representing a unit of work

or operation [9] with a variety of information. A span log consists

of basic information, span context, span attributes, etc. The basic
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Figure 3: Overview of TraceContrast

information records the name, start time, end time, and type (e.g.,

Client, Server, Producer, and Consumer) of the span. Span context

records trace id, span id, and other information which are needed

to propagate to the downstream services. Span attributes record

the information about the current operation, such as service name,

database statement, request content length, and any other data

required for trace analysis. OpenTelemetry have defined a num-

ber of attributes for common operations (e.g., database invocation,

HTTP invocation) and resources (e.g., service, container, cloud in-

frastructure) in microservice systems. And the SDKs provided by

OpenTelemetry will automatically attach the predefined attributes

to the span log when it is generated. These SDKs also support users

to customize the attributes which are needed. An example of the

trace and span log according to the OpenTelemetry specification is

shown in Figure 1. For easy understanding, we removed all client

spans in that trace, after which the trace contains a total of 6 spans,

where Span A is the root span. As shown in Figure 1, the span log

of Span E records the span name, the trace ID, the span ID, the ID of

the parent span, the start/end timestamp, and the kind of the span.

The attributes in the span log record resource information (e.g., OS

version, service name, availability zone) and operation information

(e.g., request content length, URL) corresponding to the invocation

that generated the span.

2.2 Motivation
In practice, operation engineers and developers usually locate the

root cause of a performance issue by comparing the structure and

attributes of anomalous traces and normal traces. Figure 2 shows an

example of multi-dimensional root cause localization of microser-

vice systems. The figure shows the normal traces and anomalous

traces when a performance failure occurs. For the sake of sim-

plicity, we represent the different operations with different num-

bers and only show the attributes that differ in the normal and

anomalous traces. By comparing anomalous and normal traces,

we can find the potential root causes. Moreover, each potential

root cause can be represented as a sequence consisting of attribute

values, which is called a multi-dimensional root cause. In this ex-

ample, we can find that the two most suspicious root causes are

< 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐴-1 → 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐵-1 > and < (𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐶,𝑉𝑒𝑟𝑠𝑖𝑜𝑛1) >. It
can be found that < 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐴-1 → 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐵-1 > only appears in

anomalous traces, which makes it more likely to be the real root

cause. Based on the located multi-dimensional root causes, opera-

tions engineers and developers can further analyze and mitigate

the performance issue.

Existing trace-based root cause localization approaches [3, 21,

26, 40, 49] uses spectrum analysis, heuristic methods, or machine

learning techniques to localize the root cause of performance issues.

However, these approaches only localize the root causes at the ser-

vice/instance level, which does not support the multi-dimensional

nature of microservice performance issues. Moreover, these ap-

proaches do not make good use of the attribute information in the

trace, they just represent traces as invocation pairs or execution

paths at the service/instance level for root cause localization. As

shown in the example in Figure 2, if we do not use the attribute

information (e.g., service version), we cannot locate the suspicious

root cause < (𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐶,𝑉𝑒𝑟𝑠𝑖𝑜𝑛1) >.
Existing multi-dimensional root cause localization approaches [5,

20, 22–24, 35, 38] represent telemetry data (e.g., logs, issue reports,

metrics) as a multi-dimensional table and then search the attribute

value combination where the anomalies are mostly concentrated

as the multidimensional root cause. However, different from other

telemetry data (e.g., logs, issue reports, metrics), traces usually

have a complex structure that is not suitable to be represented as

a multi-dimensional table. If we represent trace as tabular data by

converting each span log as a row in a multi-dimensional table,

we will lose the structural information of trace and thus fail to

locate the root cause of some performance issues. For example, if

we represent the traces in Figure 2 into tabular data, we will lose

the execution process information. Therefore, we cannot locate the

suspicious root cause < 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐴-1→ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐵-1 >.

Based on the analysis, we can see that in order to locate the

multi-dimensional root cause in microservice systems, we need

to combine the trace structure and the attributes in each span log.

Therefore, we propose a sequence representation to describe the

complex structure of a trace with the attributes in each span log.

Then, we combine contrast sequential pattern mining and spectrum

analysis to locate multi-dimensional root causes in microservice

systems.

3 APPROACH
TraceContrast is a multi-dimensional root cause localization ap-

proach for performance issues in microservice systems. It takes

traces as input and outputs a ranked list consist of candidate multi-

dimensional root causes.

An overview of TraceContrast is shown in Figure 3, the whole

process includes four steps. When a performance issue occurs,

TraceContrast is triggered to localize the root cause based on the

input traces. Critical Path Extraction extracts the critical path from

each trace and represents it as an event sequence. Path Anomaly

Detection detects anomalous traces and then identifies which criti-

cal paths are affected by the performance issue. Contrast Sequential

Pattern Mining uses a parallel contrast sequential pattern mining
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algorithm to find candidate root causes. Candidate Root Cause

Ranking ranks the candidate root causes based on their contrast

score and removes redundant candidate root causes from the result

list.

3.1 Critical Path Extraction
Traces may have complex structures consisting of invocation hi-

erarchy and asynchronous/parallel invocations. As a result of this

complexity, it is very hard to mine potential multi-dimensional root

causes. The critical path is widely used for performance analysis

in parallel and distributed computing [39] and has been applied

to distributed tracing in recent studies [2, 30, 45]. A critical path

describes the ordered list of steps that directly contribute to the

slowest path of a request moving through a distributed system [2].

The impact of performance issues tends to reflect in the critical path.

Therefore, we extract the critical path of each trace and represent

it as an event sequence that incorporates both the structure of the

trace and the attributes of each span.

3.1.1 Critical Path Algorithm. TraceContrast extracts the critical
path of each trace based on the span kind and the causal relation-

ship between spans. Existing approaches [30, 45] extract critical

paths only based on the start/end time of the span. However, traces

are often affected by the clock drift problem, which can lead to

inaccurately extracting critical paths. We take the start and end

of each span as different steps in the execution of a request, and

the critical path is extracted as a sequence of steps. The proposed

algorithm for critical path extraction is presented in Algorithm 1.

Algorithm 1 takes the root span of a trace as input and computes

the critical path starting from its end. We sort all the child spans

of the root span in descending order according to their end times.

Subsequently, we select the last-ended child span and use it as input

to invoke Algorithm 1. Then, we look for the next child span of the

root span which is the last-ended before the start of the current

span, and use it as input to invoke Algorithm 1. We perform the

same process until there are no spans left. The process is recursive

and stops until the input span has no child spans, or the input span

type is Producer. We keep only the server span for a pair of client

and server spans. Moreover, for a span with no child span, wemerge

the start and end into one step to make the critical path concise.

Figure 4 shows an example of the critical path extract from the

trace depicted in Figure 1. Similarly, we exclude all client spans in

the figure. Span A is the root span of this trace. This trace includes

an asynchronous invocation (Span D) and a parallel invocation

(Span E and Span F). The red segments in Figure 4 represent the

execution process of the critical path of the trace. By applying

Algorithm 1 to the trace, the critical path is represented as the step

sequence < 𝐴.𝑠𝑡𝑎𝑟𝑡 → 𝐵.𝑠𝑡𝑎𝑟𝑡 → 𝐶 → 𝐵.𝑒𝑛𝑑 → 𝐸 → 𝐴.𝑒𝑛𝑑 >. It

can be seen that both asynchronous invocation (Span D) and one

invocation in the parallel invocation (Span F) are not included in

the critical path because they do not contribute to the end-to-end

latency.

3.1.2 Critical Path Representation. To combine the attributes of a

trace with the corresponding critical path for multi-dimensional

root cause localization, we convert the step sequence of a critical

path into a sequence of event sets. Each event set corresponds to

Algorithm 1 Critical Path Extraction

Require: Root Span 𝑟𝑜𝑜𝑡

Ensure: Critical Path 𝑝𝑎𝑡ℎ

1: procedure CriticalPath(𝑟𝑜𝑜𝑡 )
2: if 𝑟𝑜𝑜𝑡 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 is None or 𝑟𝑜𝑜𝑡 .𝑘𝑖𝑛𝑑 is Producer then
3: return [𝑟𝑜𝑜𝑡]
4: end if
5: if 𝑟𝑜𝑜𝑡 .𝑘𝑖𝑛𝑑 is Client then
6: return CriticalPath(𝑟𝑜𝑜𝑡 .𝑐ℎ𝑖𝑙𝑑)

7: end if
8: 𝑝𝑎𝑡ℎ← [𝑟𝑜𝑜𝑡 .𝑒𝑛𝑑]
9: 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛← Descending sort 𝑟𝑜𝑜𝑡 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 by end time

10: 𝑙𝑎𝑠𝑡𝐶ℎ𝑖𝑙𝑑 ← 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛[0]
11: 𝑝𝑎𝑡ℎ← CriticalPath(𝑙𝑎𝑠𝑡𝐶ℎ𝑖𝑙𝑑).extend(𝑝𝑎𝑡ℎ)

12: for 𝑠𝑝𝑎𝑛 in 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛[1 :] do
13: if 𝑠𝑝𝑎𝑛.𝑒𝑛𝑑𝑇𝑖𝑚𝑒 < 𝑙𝑎𝑠𝑡𝐶ℎ𝑖𝑙𝑑.𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒 then
14: 𝑝𝑎𝑡ℎ← CriticalPath(𝑠𝑝𝑎𝑛).extend(𝑝𝑎𝑡ℎ)

15: 𝑙𝑎𝑠𝑡𝐶ℎ𝑖𝑙𝑑 ← 𝑠𝑝𝑎𝑛

16: end if
17: end for
18: 𝑝𝑎𝑡ℎ← [𝑟𝑜𝑜𝑡 .𝑠𝑡𝑎𝑟𝑡].extend(𝑝𝑎𝑡ℎ)

19: return 𝑝𝑎𝑡ℎ

20: end procedure

Figure 4: An Example of Critical Path

a step in the critical path and contains multiple events, with each

event corresponding to an attribute value in the corresponding

span.

Given a critical path, we convert each step to an event set in

the following way. For each step, we obtain all the attributes of

the corresponding span. Then, convert each attribute into dis-

crete events based on their value type (nominal or numerical).

For each nominal attribute whose value is given by a finite set

of categories, e.g., service name, instance id, we treat each occur-

rence of a nominal value as a unique event and insert it into the

event set. For each numerical attribute, such as request payload

length, we obtain the attribute’s values in all traces and discretize

it into different intervals. Then, given a specific numerical attribute

value, we replace it with its interval and treat it as a unique event.

Specifically, we use Jenks’ natural breaks [15] to find intervals

in the values, which is a clustering method designed to deter-

mine the best arrangement of values into different classes. For

example, the step 𝐸 in the critical path in Figure 4 can be repre-

sent as the event set (𝐺𝐸𝑇 /𝑣1/𝑜𝑟𝑑𝑒𝑟𝑠, 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐶, 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐶-2, 𝑛𝑜𝑑𝑒-1,
2000 < 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑙𝑒𝑛𝑔𝑡ℎ < 4000, · · · ). We perform this procedure for

each step until the sequence has been processed. In particular, for a
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more concise representation of the critical path, for attributes that

have the same meaning we keep only one of them, such as service

id and service name.

3.2 Path Anomaly Detection
To perform spectrum analysis, we need to first identify which criti-

cal paths pass through the root causes. Existing approaches [21, 40]

assume that all anomalous traces pass through the root causes, but

this is inaccurate as a fault may propagate across the microservice

system. For example, if a performance issue occurs in an API of a

service, an anomaly may occur when other APIs in that service are

invoked because of concurrent invocations. Our insight is that if

the critical path of a trace passes through the root cause, it has a

higher probability of being anomalous than other traces. Moreover,

a microservice system has limited scales and provides limited func-

tionality, the critical path for some traces is the same. Therefore, we

first perform anomaly detection on each trace based on its critical

path. Then the traces with the same critical path are aggregated

into a group, and the proportion of anomalous traces in the group is

calculated. If the group has a high percentage of anomalous traces,

its corresponding critical path will be considered as anomalous.

First, We use 𝑘 − 𝜎 to detect whether a trace is anomalous based

on its critical path. The end-to-end latency of traces with the same

critical path in the operation level usually has the same distribution.

It is because the end-to-end latency is usually determined by the

operations invoked, independent of other attributes. Thus, we keep

only the operation names in the critical path representations and

aggregate traces with the same critical path into a group. Then, we

calculate the mean ` and standard deviation 𝜎 of end-to-end latency

of each group from a set of traces collected from a period time of

normal execution. For each trace, we obtain the mean and standard

deviation of the end-to-end latency of its critical path. The trace is

detected as anomalous if its latency is higher than ` + 𝑘 × 𝜎 , where
𝑘 is the parameter used to adjust the threshold. For example, if the

mean latency and the standard deviation of the normal execution of

the critical path in Figure 4 is 20𝑚𝑠 and 2𝑚𝑠 , then a new trace that

has the same critical path and the latency higher than 20 + 𝑘 × 2
ms will be detected as anomalous.

When a performance issue occurs, there can be critical paths that

are not present in the normal execution of the system. To detect

anomalous traces in these scenarios, we calculate the expected

latency of each trace based on its critical path. As shown in Figure 4,

the latency of each trace is the sum of the local execution time of

each span in the critical path. Local execution time is the execution

time of the current span with the waiting time of its child spans

excluded [12, 43]. Thus, we calculate the expected local execution

time for each span in the critical path and treat the sum of the

expected local time as the expected latency of the trace. Inspired

by previous work [14, 40], the excepted latency of each trace is

calculated using Equation 1.

𝐿𝑝𝑎𝑡ℎ =
∑︁

𝑠𝑝𝑎𝑛∈𝑝𝑎𝑡ℎ
`𝑠𝑝𝑎𝑛.𝑜𝑝 + 𝑛 × 𝜎𝑠𝑝𝑎𝑛.𝑜𝑝

(1)

where `𝑠𝑝𝑎𝑛.𝑜𝑝 is the mean of the local execution time of the corre-

sponding operation in normal execution; 𝜎𝑠𝑝𝑎𝑛.𝑜𝑝 is the standard

Figure 5: Example of Path Anomaly Detection

deviation of the local execution time of the corresponding operation

in normal execution; 𝑛 is used to adjust upper bound values.

Based on the detected anomalous traces, we then detect the

anomalous critical paths. We first aggregate traces with the same

critical path into a group. Unlike trace anomaly detection, we use all

possible attributes for root cause location in this aggregation. Only

critical paths with the same attributes and order will be aggregated

into a group. Then a critical path is determined as anomalous when

there are at least 𝛼 percent of traces (𝛼 is 70% in this paper) in its

group are anomaly traces. As shown in Figure 5, there are only 60%

traces that are anomalous in the group of Path 1, thus it will be

determined as a normal path. Finally, we will output all anomalous

and normal paths, and the number of traces corresponding to each

path, as shown in the example in Figure 5. In this way, the num-

ber of paths that need to be processed is greatly decreased when

performing contrast sequential pattern mining in the next step.

3.3 Contrast Sequential Pattern Mining
We frame the task of trace-based multi-dimensional root cause lo-

calization as a contrast sequential pattern (CSP) mining problem.

Contrast sequential pattern mining problem aims to find patterns

that occur frequently in one sequence dataset but not in others

[16, 46]. It can discover the characteristics of different classes in

sequence datasets and has been widely used in sequential data anal-

ysis, such as anomaly detection and customer behavior analysis

[16, 46]. For the trace-based multi-dimensional root cause localiza-

tion task, each pattern is a sequence consisting of attribute values,

and the root cause is included in the patterns that occur frequently

in anomaly paths but not in normal paths.

TraceContrast treats the anomaly paths and normal paths as

two sequential databases that consist of critical paths, then uses

eCSP algorithm [46] to mine contrast patterns. As a critical path

is represented as a sequence of event sets, thus a pattern is a sub-

sequence of this sequence. For example, < 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐴→ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐵 >

and < (𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐴,𝐴𝑃𝐼1) > are some sub-sequences of the sequence

< (𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐴,𝐴𝑃𝐼1) → (𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐵,𝐴𝑃𝐼2) >. It can be seen that the

sub-sequences can represent entities in the system and their in-

teractions at different levels of dimension which enables multi-

dimensional root cause localization.

eCSP [46] is a tree-based algorithm similar to PrefixSpan, which

implements a downward and depth-first search strategy on the

tree to find all patterns. As shown in Figure 6, each node in the

tree represents a pattern, and the parent node represents its prefix.
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Figure 6: The Structure of the Tree in eCSP

And each node stores the information of a pattern, including the

projected databases and the support of each database. The support

of a pattern 𝑝 in one sequential database, denoted as 𝑆𝑢𝑝 (𝑝), is
the number of traces whose critical path contains 𝑝 divided by

the number of traces in the sequential database. As we record

the number of traces corresponding to each critical path, we can

efficiently calculate the supports of each sub-sequence. eCSP will

search the tree until the patterns reach the pre-defined maximum

length. Then all the patterns of the nodes that have been searched

are output as results. Readers can refer to [46] for more details of

eCSP algorithm.

The number of critical paths and events in a large-scale microser-

vice system is often enormous, resulting in the mining process can

be inefficient. We improve the efficiency of eCSP in the following

two aspects. First, we extend the eCSP algorithm to a parallel ver-

sion by utilizing the tree structure. Specifically, We execute the

eCSP algorithm until the projected database size of each node to be

searched is less than a threshold. We then start multiple threads,

and each thread independently searches different subtrees. We im-

plemented the algorithm using Spark [11] to enable it to be used in

any distributed computing clusters. On the other hand, we adopt

several pruning methods to reduce the search space. Following [46],

we employ the following pruning methods.

• Events pruning: Its removes events that appear only in the

normal paths and not in the anomaly paths. This is because,

in the root cause localization task, the root cause must in-

clude in the anomaly paths but not necessarily in the normal

paths.

• Chi-square pruning: It prunes a pattern when its sample

distribution similar to its prefix’s. Specifically, TraceContrast

calculates the chi-square statistic value between a pattern

and its prefix. If the value is less than a predefined threshold

𝛿 , then the node will be pruned.

• Minimum support pruning: TraceContrast pruning a pat-

tern when its support in the anomaly paths is lower than a

threshold \ .

Readers can refer to [46] for more details of the last two pruning

methods.

Figure 7: Relationship of Some Concepts in Microservice
Systems

3.4 Candidate Root Cause Ranking
TraceContrast ranks patterns found by the eCSP algorithm based on

the discriminative ability of each pattern. Previous works [16, 46]

use some statistical metrics to calculate the contrast score of each

pattern to measure its discriminative ability, such as growth rate,

and support difference. However, they are not designed for the

root cause localization task. Spectrum analysis-based fault localiza-

tion has been widely used in program debugging [36], and several

formulas have been proposed. TraceContrast uses a spectrum anal-

ysis formula to calculate the contrast score of each pattern. The

redundant patterns are then removed based on microservice system

domain knowledge and a ranked list of candidate root causes is

returned.

3.4.1 Contrast Score. TraceContrast uses the spectrum analysis

formula to calculate the contrast score of each pattern. The intuition

of the spectrum analysis formula is measuring which program

element is covered by more failed test cases and less passed test

cases. For multi-dimensional root cause localization, we consider

patterns that are covered by more anomalous paths and less normal

paths are more likely to be the root cause, which is similar to the

intuition of the spectrum analysis. Specifically, TraceContrast uses

the Ochiai ranking formula [1], which is defined as follows:

𝑆𝑐𝑜𝑟𝑒𝑠 =
𝑒𝑓 (𝑠)√︃

(𝑒𝑓 (𝑠) + 𝑛𝑓 (𝑠)) ∗ (𝑒𝑓 (𝑠) + 𝑒𝑝 (𝑠))
(2)

where 𝑠 is a pattern in the result; 𝑛𝑓 (𝑠) is the number of traces

whose critical path doesn’t contain pattern 𝑠 in the anomaly data-

base; 𝑒𝑓 (𝑠) is the number of traces whose critical path contains

pattern 𝑠 in the anomaly database; 𝑒𝑝 (𝑠) is the number of traces

whose critical path contains pattern 𝑠 in the normal database. Our

approach also supports using other formulas to calculate contrast

scores.

3.4.2 Redundant PatternsMitigation. Although TraceContrast finds
and ranks patterns that possibly contain the root cause, it can some-

times contain redundant patterns that correspond to the same po-

tential root cause. Operations engineers and developers want the

tool to output different potential root causes as much as possible to

speed up fault diagnosis. Thus we remove redundant patterns from

the result to output a concise result.

We define the redundant pattern as the pattern whose discrimi-

native ability comes from another pattern in the result list. Then,

we identify redundant patterns based on the relationships between
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different patterns and the relationships between concepts in the

microservice system. As shown in Figure 7, the concepts in the

microservice system have a hierarchical structure. This leads to the

fact that when a concept is affected by a fault, all of its underlying

concepts are also affected. For example, when there is a bug in a

service, all its instances are affected by that bug. In this paper, we

use the conceptual hierarchy shown in Figure 7, which is applicable

to most microservice systems. Our approach also supports the user

to customize the concept hierarchy as required.

TraceContrast first identifies redundant patterns whose discrim-

inative ability comes from its sub-pattern. Pattern 𝑝1 is the sub-

pattern of pattern 𝑝2 when the corresponding sequence of 𝑝1 is a

sub-sequence of the corresponding sequence of 𝑝2. If a pattern’s

score is less than or equal to the score of one of its sub-patterns, it

will be identified as a redundant pattern. For example, if pattern

< 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐴→ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐵 > has a score of 0.9 and its sub-sequence

< 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐴 > has a score of 0.9, then < 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐴→ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐵 > is

identified as a redundant pattern.

Then, TraceContrast identifies redundant patterns whose dis-

criminative ability comes from the high level concepts in the system.

Based on the concept hierarchy, we define the concept sub-patterns

of a pattern as the patterns that can be obtained by converting one

or more events in the pattern or its sub-patterns to their high level

concept events. For example, pattern < 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐴 > is a concept

sub-pattern of pattern < 𝐴𝑃𝐼2 → 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐵 >, where 𝐴𝑃𝐼2 belongs

to 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐴. If a pattern’s score is less than or equal to the score of

one of its concept sub-patterns, it will be identified as a redundant

pattern. For example, if pattern < 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐴 > has a contrast score

of 0.9, and pattern < 𝐴𝑃𝐼2 → 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐵 > has a contrast score of 0.8,

then < 𝐴𝑃𝐼2 → 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐵 > is identified as a redundant pattern.

4 EVALUATION
To evaluate TraceContrast we conduct a series of experimental

studies to investigate the following research questions:

• RQ1: How accurate is TraceContrast in root cause localiza-

tion compared with baseline approaches?

• RQ2: How efficient is TraceContrast in root cause localiza-

tion compared with baseline approaches? How well can it

scale with the available computing resources?

• RQ3: How much do the different modules of TraceContrast

contribute to the accuracy?

• RQ4: How sensitive is TraceContrast to the minimum sup-

port in contrast sequential pattern mining?

4.1 Experiment Setup
4.1.1 Dataset. Our experiments are conducted on a medium-scale

open-source microservice benchmark system: TrainTicket [48, 51].

It provides typical train ticket booking functionalities and has been

widely used in researches on microservice architecture, resource

management, and fault diagnosis [17, 29, 30, 37, 40, 42, 43, 49]. It

contains 47 services implemented in different languages and com-

municating with synchronous REST invocations and asynchronous

messaging.

We deploy TrainTicket on a Kubernetes cluster with six virtual

machines. Each virtual machine is equipped with an 8-core Intel

Xeon 3.0GHz CPU, and 24GB RAM, and runs with CentOS 7.7.

Some services are deployed as multiple instances, with a total of

90 service instances. We use OpenTelemetry [9] as the distributed

tracing framework to collect traces and use Grafana Tempo [8] as

the distributed tracing backend.

Because the datasets from existing work [21, 26, 40] only contain

faults at the instance/service dimension, and cannot well evaluate

multi-dimensional root cause localization. We use fault injection

to simulate different dimensions performance issues for our ex-

perimental studies following previous works [17, 37, 40, 42, 43].

We use the widely used chaos engineering tool ChaosBlade [6] to

inject different faults. In particular, we adopt 5 fault types and inject

faults at different dimensions to simulate performance issues on

multi-dimensional. Table 1 shows the details of the fault injection

strategies in our dataset. We label the root cause of each perfor-

mance issue according to the fault types and injection targets. For

example, we inject the slow SQL fault at the service (all service

instances belong to this service) and service instance levels, and

label the root cause of the fault as the combination of the slow SQL

statement/command and the service/service instance.

We use the load generator provided by TrainTicket [48, 51] to

execute automated test cases to simulate different user requests to

generate traces. For each performance issue, we inject one fault

at a time and make it last for six minutes. In total, we collected a

total of 175 performance issues along with 4,331,882 traces. The

longest trace in our dataset contains more than 400 spans; each

span contains at least 5 attributes and at most 18 attributes. Com-

pared to existing work, we constructed the dataset using a higher

concurrency request number, which better reflects the impact of

fault propagation and results in more traces in each performance

issue. In addition, we create an initialization dataset, which includes

322,828 traces collected from a normal execution of TrainTicket

in 2 hours. The initialization dataset is used for the initialization

of TraceContrast and also the initialization or training of all the

baseline approaches.

4.1.2 Baseline Approaches. We compared TraceContrast with the

following four state-of-the-art trace-based unsupervised root cause

localization approaches.

• CRISP [45]: It represents traces as critical paths. Then it

uses the same model and lightweight heuristic method as

TraceAnomaly [26] to locate root cause instances.

• MicroRank [40]: It uses a PageRank-based spectrum analy-

sis method to locate the root cause instances.

• TraceRCA [21]: It uses frequent itemset mining and spec-

trum analysis to locate the root cause instances.

• Minesweeper [28]: It combines sequential pattern mining

and statistical isolation measures to locate the root causes

of crash reports. It represents user behavior as sequences of

events to locate root causes, but it does not support multi-

dimensional root cause localization. We extend it to support

multi-dimensional root cause localization and feed it the

same anomalous paths and normal paths as TraceContrast

to locate multi-dimensional root causes.
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Table 1: Fault Injection Strategies in the TrainTicket Dataset

Fault Type Description Injection Targets

CPU Exhausted The CPU of a container is exhausted, resulting in an increase in the processing

time of invocations.

Service, Service Instance

Network Delay A network jam occurs, resulting in an increase in the time spent on network

communication.

Service, Service Instance, Service Invoca-

tion Pair, Service Instance Invocation Pair

API Delay Implementation bugs of an API or traffic scheduling issues, resulting in an

increase in processing time when invoking that API.

Service, Service Instance

Slow SQL A bug in table structure design or SQL statement implementation, resulting in

an increase in processing time for a type of SQL command or a SQL statement.

Service, Service Instance

Producer Delay Excessive concurrent requests to the message queue, resulting in an increase

in the time to produce a message.

Service, Service Instance

4.1.3 Evaluation Metrics. We use the top-k hit ratio (HR@k) and

mean reciprocal rank (MRR) to evaluate the accuracy of multi-

dimensional root cause localization following existing works [25,

37, 40].

• HR@k represents the probability that the root cause is

included in the top-k result list (𝑘 = 1, 3, 5 in this paper).

• MRR is the multiplicative inverse of the rank of the root

cause in the result list. If the root cause is not included in

the top-10 result list, the rank can be regarded as positive

infinity [25]. Given a set of fault instances 𝐴, 𝑅𝑎𝑛𝑘𝑖 is the

rank of the root cause in the returned list of the 𝑖th fault

instance, MRR is calculated by the following equation:

𝑀𝑅𝑅 =
1

|𝐴|

|𝐴 |∑︁
𝑖=1

1

𝑅𝑎𝑛𝑘𝑖
(3)

For a fair comparison with the baseline approaches, we also

evaluate the accuracy of instance dimensional root cause localiza-

tion of all approaches. For each performance issue, we regard all

service instances which are injected with fault as the root cause.

When evaluating the accuracy of instance dimensional root cause

localization, we regard it as a hit only when all service instances

are included in the result list. For TraceContrast and Minesweeper,

which are multi-dimensional root cause location approaches, we

regard it as hitting all instances of a service when the result list

contains the service.

4.1.4 Implementation and Settings. We implement TraceContrast

in Python 3.8, Scala 2.12, and Spark 3.2.3 [11] (for contrast sequential

pattern mining). With Spark, TraceContrast can be easily deployed

in a large-scale computing cluster, supporting usage in industrial-

scale systems. The settings of TraceContrast are the following: the

threshold 𝜖 in chi-square pruning is 3.84; the minimum support \ is

0.5. We set 𝑘 in 𝑘−𝜎 as 3 and 𝑛 in Equation 1 is 3 following previous

studies. In practice, these two parameters can be decided based on

the validation set. The conceptual hierarchy used for redundant

pattern mitigation is shown in Figure 7. All the experimental studies

are conducted on a Linux server with two AMD EPYC 7T83 64-Core

Processor CPU, 512GB RAM, RTX 3090 with 24GB GPU memory

and running Ubuntu 20.04.5.

4.2 Accuracy
Table 2 and Table 3 show the results of TraceContrast and the base-

line approaches for multi-dimensional and instance dimensional

Table 2: Accuracy of Different Approaches at Multi Dimen-
sional

Approach HR@1 HR@3 HR@5 MRR

CRISP 0.217 0.240 0.257 0.229

MicroRank 0.154 0.183 0.229 0.178

TraceRCA 0.223 0.234 0.234 0.227

Minesweeper 0 0.120 0.160 0.063

TraceContrast 0.497 0.589 0.629 0.554

Table 3: Accuracy of Different Approaches at Instance Di-
mension

Approach HR@1 HR@3 HR@5 MRR

CRISP 0.326 0.429 0.469 0.385

MicroRank 0.274 0.429 0.589 0.394

TraceRCA 0.417 0.463 0.463 0.442

Minesweeper 0.011 0.200 0.269 0.115

TraceContrast 0.629 0.777 0.829 0.706

root cause localization respectively. It can be seen that TraceCon-

trast outperforms all baseline approaches in both multi-dimensional

and instance-dimensional root cause localization and achieves 0.629

and 0.829 in term of HR@5 respectively.

For multi-dimensional root cause localization, TraceContrast

outperforms the baseline approaches by 144.7%-293.1% in term of

HR@5. MicroRank, TaceRCA, and CRISP show poor performance

in multi-dimensional root cause localization as they can only lo-

calize root causes at the instance dimension. While Minesweeper

supports localizing multi-dimensional root causes, its accuracy is

much lower than the other methods. It is because Minesweeper

performs frequent sequence pattern mining on normal and abnor-

mal traces respectively, which can make it difficult to find patterns

with high discriminative ability. On the other hand, it aggregates

candidate root causes with similar scores into a group and only

the longest root cause is retained in each group, resulting in many

candidate root causes being incorrectly identified as redundant.

TraceContrast performs much better than the baseline approaches,

as it can find contrast patterns from the traces and combine domain

knowledge to identify redundant patterns.
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Table 4: Average Execution Time of Different Approaches

Approach Time Consuming

CRISP 8.7s

MicroRank 250.9s

TraceRCA 43.2s

Minesweeper 1,088.9s

TraceContrast 209.6s

For instance dimensional root cause localization, TraceContrast

outperforms the baseline approaches by 40.7%-208.1% in term of

HR@5. This is because MicroRank and TaceRCA perform spectrum

analysis based on the original traces rather than the critical paths,

which can lead to the mislocalization of instances involving parallel

and asynchronous invocations. Although CRISP uses the critical

path, it simply treats the root cause as the instance corresponding

to the last anomaly span in the critical path. This makes CRISP dif-

ficult to diagnose performance issues where the root cause includes

multiple instances.

In conclusion, TraceContrast is effective in multi-dimensional

and instance-dimensional root cause localization. And TraceCon-

trast outperforms baseline approaches by 319.1% and 184.1% on aver-

age in term of MRR in multi-dimensional and instance-dimensional

root cause localization respectively.

4.3 Efficiency and Scalability
To evaluate the efficiency of TraceContrast and the baseline ap-

proaches, we compare the average execution time of root cause

localization of TraceContrast and the baseline approaches. We did

not compare the execution time of trace anomaly detection because

it is less time-consuming and most approaches can use any trace

anomaly detection method.

Table 4 shows the average execution time of TraceContrast and

baseline approaches. On average, these approaches take 8.7-1,088.9

seconds to locate the root cause of a performance issue. In general,

all approaches are efficient, except the Minesweeper which average

cost 1,088.9 seconds to locate the root cause of a performance issue.

TraceContrast is slower than CRISP and TraceRCA but faster than

Microrank and Minesweeper.

CRISP is much faster than other approaches because it uses a

lightweight heuristic method. TraceRCA is slightly slower than

CRISP because it mines frequent invocation pairs. TraceContrast

and Minesweeper are slower than TraceRCA as sequential pattern

mining is more time-consuming. Microrank is slower than Trace-

Contrast because the PageRank algorithm takes much time when

the graph size is large. Although we have optimized Minesweeper

with parallel execution, it still consumes more time than TraceCon-

trast. It is because it mines potential root causes in anomaly and

normal traces respectively, without using any effective pruning

strategies.

To evaluate the scalability of TraceContrast, we calculate the av-

erage execution time of TraceContrast with different computational

resources from 8 cores to 128 cores. The results in Figure 8 show

that the average execution time of TraceContrast decreases from

Figure 8: Changes of Execution Time with the Increase of
CPU Cores

Table 5: Evaluation of Contribution of Anomaly Path Detec-
tion and Redundant Patterns Mitigation at Multi Dimension

Approach HR@1 HR@3 HR@5 MRR

TraceContrast w/oPAD 0.429 0.480 0.491 0.458

TraceContrast w/oRPM 0.463 0.549 0.594 0.523

TraceContrast w/oALL 0.383 0.469 0.497 0.433

TraceContrast 0.497 0.589 0.629 0.554

940.5 to 209.6 seconds with increasing computational resources.

It can be seen that parallel execution can effectively improve the

efficiency of contrast sequential pattern mining. However, the re-

duction in execution time decreases as the computational resources

increase, because the bottleneck in execution time may exist in a

small number of subtrees. We implement TraceContrast based on

Spark, which can effectively utilize big data computing clusters and

can be effectively applied to large-scale microservices systems.

In conclusion, TraceContrast achieves an average execution time

of 209.6s, which is acceptable for root cause localization. Further-

more, the efficiency of TraceContrast can be further improved by

parallel execution with more computing resources.

4.4 Ablation Study
We perform an ablation study to evaluate how different modules of

TraceContrast contribute to the accuracy of root cause localization.

Path anomaly detection and redundant pattern mitigation are two

important modules that affect the accuracy of TraceContrast. We

derive the following three variants of TraceContrast: TraceCon-
trast w/oPAD removes the path anomaly detection module and

uses the original anomaly and normal traces as the input of con-

trast sequential pattern mining directly. TraceContrast w/oRPM
removes the redundant pattern mitigation module and outputs the

original rank list. TraceContrast w/oALL removes both of the

above modules.

Table 5 and Table 6 show the evaluation results of the contribu-

tion of the two steps at multi-dimensional and instance-dimensional

root cause localization respectively. In terms of MRR, TraceContrast

outperforms the three variants by 54.8% and 68.9% on average in

multi-dimensional and instance-dimensional root cause localiza-

tion. This is because the path anomaly detection module removes
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Table 6: Evaluation of Contribution of Anomaly Path Detec-
tion and Redundant Patterns Mitigation at Instance Dimen-
sion

Approach HR@1 HR@3 HR@5 MRR

TraceContrast w/oPAD 0.509 0.640 0.680 0.570

TraceContrast w/oRPM 0.600 0.680 0.691 0.646

TraceContrast w/oALL 0.480 0.554 0.571 0.520

TraceContrast 0.629 0.777 0.829 0.706

(a) Multi Dimension (b) Instance Dimension

Figure 9: Impact of Minimum Support on Hit Ratio of Root
Cause Localization

critical paths which are not pass through the root cause from the

anomalous paths, thus preventing some patterns that affect by fault

propagation from getting into the final rank list. The redundant

pattern mitigation module effectively removes redundant patterns

and makes the rank list more informative.

In conclusion, path anomaly detection and redundant pattern

mitigation can effectively improve the accuracy of TraceContrast

for both multi-dimensional and instance-dimensional root cause

localization. It also illustrates the rationality of the design of Trace-

Contrast.

4.5 Sensitivity to Minimum Support
We investigate the impact of the minimum support in TraceCon-

trast. Minimum support influences the number of candidate root

causes found by TraceContrast and the execution time. We test

the hit ratio and execution time of TraceContrast with different

values of minimum support from 0.4 to 0.9 and keep all the other

configurations unchanged.

Figure 9 and Figure 10 show the impact of the minimum support

on the hit ratio and execution time respectively. It shows that with

the increase of the minimum support the hit ratio declines and

the execution time increases. It is because that smaller support

makes TraceContrast search more nodes in the tree in eCSP, thus

finding more candidate root causes. However, when the minimum

support is less than 0.6, with the decrease of the minimum support

the execution time increases significantly, but the hit rate increase

slowly. Therefore, the trade-off between accuracy and execution

time should be considered when choosing the minimum support.

Figure 10: Impact of Minimum Support on Execution Time
of Root Cause Localization

4.6 Threats to Validity
The internal threats in our studies are mainly from the implemen-

tation and configuration of baseline approaches. MicroRank and

TraceRCA have provided publicly available implementations, thus

we use them directly. CRISP is based on TraceAnomaly [26], thus

we implement CRISP based on TraceAnomaly’s publicly available

implementation [33]. Although Minesweeper has no publicly avail-

able implementations, it is based on the standard sequential pattern

mining algorithm PrefixSpan. We implement it following its pa-

per and use the standard PrefixSpan algorithm provided by Spark

to reduce the threat. In terms of the impact of configuration, we

chosse the best configuration for all baseline approaches through

experimentation.

The external threats in our studies are mainly from the repre-

sentativeness of benchmark system and performance issues. We

have only conducted experiments on TrainTicket as there are no

publicly available datasets from industrial systems. Although it is

one of the largest open-source microservices systems and is widely

used in existing studies [21, 26, 42, 44, 45, 49], there is still a gap

between its scale and industrial large-scale microservices systems.

Moreover, although we use more fault types than existing studies

[21, 26, 40], these faults still can hardly cover all fault types in in-

dustrial large-scale microservices systems. Therefore, the results of

our experimental studies may not be generalized to larger or more

complex systems or performance issues.

5 RELATEDWORK
With the development of distributed tracing and its infrastructure,

researchers have investigated distributed tracing-based fault diag-

nosis techniques. Some existing studies [19, 27, 48] have analyzed

the role of distributed tracing in the fault diagnosis of large-scale

microservices systems, which shows that automated trace analysis

is critical for fault diagnosis in large-scale microservices systems.

Recently, researchers have proposed some trace-based root cause

localization approaches based on machine learning techniques.

Zhou et al. [49] propose MEPFL, a supervised learning approach

that uses a set of predefined features to represent each trace, It trains

three models to predict anomalous traces, anomalous services, and

anomaly types respectively. Gan et al. [4] propose Seer, which uses

supervised learning to train a CNN and LSTM based model to locate
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root cause service. These supervised approaches use fault injection

to generate labeled traces, but fault injection is difficult to cover all

types of faults. This makes it difficult to apply these approaches in

industrial systems. Liu et al. [26] propose an unsupervised approach

called TraceAnomaly, which trains deep Bayesian networks model

to detect anomalous traces and uses a lightweight heuristic method

to locate anomalous service instances. Zhang et al. [45] further

extend TraceAnomaly by representing traces as critical paths. Gan

et al. [3] propose Sage, which is based on graph neural networks

and counterfactual inference for unsupervised root cause service

instance localization. However, machine learning-based approaches

face the problem of gradual performance degradation due to con-

cept drift, resulting in the requirement to periodically retrain the

model to alleviate this problem.

Some researchers extend spectrum analysis techniques to achieve

more practical approaches for trace-based microservice root cause

localization. Yu et al. [40] proposeMicroRank, which uses a PageRank-

based spectrum analysis method to locate root cause service in-

stances. Then they propose TraceRank [41], which extends Micro-

Rank by combining spectrum analysis with random walk-based

method. Li et al. [21] combine spectrum analysis with frequent

pattern mining to locate root cause service instances. These ap-

proaches don’t rely on training data and are easy to implement,

which makes them more acceptable to industry systems. However,

they all focus on root cause localization at the service/instance level,

ignoring the fact that multi-dimensional root causes are common

in microservice systems.

Multi-dimensional root cause localization is important in the

cloud and large-scale online systems, which has attracted the atten-

tion of many researchers [5, 20, 22–24, 35, 38]. These approaches

represent telemetry data as multi-dimensional tabular data and

search for the attribute value combination where the anomalies

are most concentrated as the root cause. CMMD [38], Squeeze [22],

and ImAPTr [35] transform metrics data into multi-dimensional

tabular data based on the attributes in raw data. MID [5] and iDice

[24] represent issue reports as multi-dimensional tabular data by

extracting attributes from issue reports. Lin et al. [23] represent

logs as multi-dimensional tabular data by extracting pre-defined

features from structured logs, then use FP-Growth to find frequent

combinations of feature values as the root cause. These approaches

are designed for multidimensional tabular data and cannot well

handle data with complex structures, such as traces. Therefore,

these approaches cannot well support the multi-dimensional root

cause localization of microservice systems.

6 CONCLUSION
In this paper, we proposed a trace-based multi-dimensional root

cause localization approach for performance issues of microser-

vice systems, called TraceContrast. It represents traces as event

sequences which combine the complex structure of traces and at-

tributes of each span. Based on the representation, TraceContrast

combines contrast sequential pattern mining and spectrum anal-

ysis to localize multi-dimensional root causes. Experiments on a

medium-scale microservice benchmark system show that TraceCon-

trast outperforms existing approaches in both multi-dimensional

and instance-dimensional root cause localization. And TraceCon-

trast is efficient and its efficiency can be further improved by parallel

execution.
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