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ABSTRACT

Android apps are omnipresent, and frequently suffer from crashes
— leading to poor user experience and economic loss. Past work
focused on automated test generation to detect crashes in Android
apps. However, automated repair of crashes has not been studied.
In this paper, we propose the first approach to automatically re-
pair Android apps, specifically we propose a technique for fixing
crashes in Android apps. Unlike most test-based repair approaches,
we do not need a test-suite; instead a single failing test is meticu-
lously analyzed for crash locations and reasons behind these crashes.
Our approach hinges on a careful empirical study which seeks to
establish common root-causes for crashes in Android apps, and
then distills the remedy of these root-causes in the form of eight
generic transformation operators. These operators are applied using
a search-based repair framework embodied in our repair tool Droix.
We also prepare a benchmark DroixBench capturing reproducible
crashes in Android apps. Our evaluation of Droix on DroixBench
reveals that the automatically produced patches are often syntacti-
cally identical to the human patch, and on some rare occasion even
better than the human patch (in terms of avoiding regressions).
These results confirm our intuition that our proposed transforma-
tions form a sufficient set of operators to patch crashes in Android.
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1 INTRODUCTION

Smartphones have become pervasive, with 492 millions sold world-
wide in the year of 2011 alone [21]. Users tend to rely more on their
smartphones to conduct their daily computing tasks as smartphones
are bundled with various mobile applications. Hence, it is important
to ensure the reliability of apps running in their smartphones.

Testing and analysis of mobile apps, with the goal of enhancing
reliability, have been studied in prior work. Some of these works
focus on static and dynamic analysis of mobile apps [2, 7, 18, 56],
while other works focus on testing of mobile apps [3, 4, 30, 31, 43].

To further improve the reliability of mobile applications, several
approaches go beyond automated testing of apps by issuing security-
related patches [6, 39]. While fixing security-related vulnerabilities
is important, a survey revealed that most of the respondents have
experienced a problem when using a mobile application, with 62
percent of them reported a crash, freeze or error [1]. Indeed, fre-
quent crashes of an app will lead to negative user experience and
may eventually cause users to uninstall the app. In this paper, we
study automated approaches which alleviate the concern due to
app crashes via the use of automated repair.

Recently, several automated program repair techniques have
been introduced to reduce the time and effort in fixing software
errors [24, 28, 35, 40, 42, 52]. These approaches take in a buggy
program P and some correctness criterion in the form of a test-
suite T, producing a modified program P’ which passes all tests in
T. Despite recent advances in automated program repair techniques,
existing approaches cannot be directly applied for fixing crashes
found in mobile applications due to various challenges.

The key challenge in adopting automated repair approaches to
mobile applications is that the quality of the generated patches is
heavily dependent on the quality of the given test suite. Indeed, any
repair technique tries to patch errors to achieve the intended behav-
ior. Yet, in reality, the intended behavior is incompletely specified,
often through a set of test cases. Thus, repair methods attempt to
patch a given buggy program, so that the patched program passes
all tests in a given test-suite T (We call repair techniques that use
test cases to drive the patch generation process test-driven repair).
Unsurprisingly, test-driven repair may not only produce incomplete
fixes but the patched program may also end up introducing new
errors, because the patched program may fail tests outside T, which
were previously passing [45, 49]. Meanwhile, several unique proper-
ties of test cases for mobile applications pose unique challenges for
test-driven repair. First, regression test cases may not be available
for a given mobile app A. While prior researches on automated test
generation for mobile apps could be used for generating crashing
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inputs, regression test inputs that ensure the correct behaviors of
A are often absent. Secondly, instead of simple inputs, test inputs
for mobile apps are often given as a sequence of Ul commands (e.g.,
clicks and touches) leading to crashes in the app. Meanwhile, GUI
tests are often flaky [29, 36]: their outcome is non-deterministic
for the same program version. As current repair approaches rely
solely on the test outcomes for their correctness criteria, they may
not be able to correctly reproduce tests behavior and subsequently
generate incorrect patches due to flaky tests.

Another key challenge in applying recent repair techniques to
mobile applications lies on their reliance on the availability of
source code. However, mobile applications are often distributed
as standard Android .apk files since the source code for a given
version of a mobile app may not be directly accessible nor actively
maintained. Moreover, while previous automated repair techniques
are applied for fixing programs used by developers and program-
mers, mobile applications may be utilized by general non-technical
users who may not have any prior knowledge regarding source
code and test compilations.

We present a novel framework, called Droix for automated repair
of crashes in Android applications. In particular, our contributions
can be summarized as follows:

Android repair: We propose a novel Android repair framework
that automatically generates a fixed APK given a buggy APK and
a Ul test. Android applications were not studied in prior work in
automated program repair, but various researches on analysis [2,
7, 18, 56] and automated testing [3, 4, 30, 31, 43] illustrate the
importance of ensuring the reliability of Android apps.

Repairing Ul-based test cases: Different from existing repair ap-
proaches based on a set of simple inputs, our approach fixes a
crash with a single UI event sequence. Specifically, we employ
techniques allowing end users to reproduce the crashing event
sequence by recording user actions on Android devices instead of
writing test codes. The crashing input could be either recorded
manually by users or automatically generated by GUI testing ap-
proaches [30, 47].

Lifecycle-aware transformations Our approach is different from
existing test-driven repair approaches since it does not seek to
modify a program to pass a given test-suite. Instead, it seeks to
repair the crashes witnessed by a single crashing input, by em-
ploying program transformations which are likely to repair the
root-causes behind crashes. We introduce a novel set of lifecycle-
aware transformations that could automatically patch crashing
android apps by using management rules from the activity lifecycle
and fragment lifecycle.

Evaluation: We propose DroixBench, a set of 24 reproducible
crashes in 15 open source Android apps. Our evaluation on 24
defects shows that Droix could repair 15 bugs, and seven of these
repairs are syntactically equivalent to the human patches.

2 BACKGROUND: LIFECYCLE IN ANDROID

Different from Java programs, Android applications do not have a
single main method. Instead, Android apps provide multiple entry
points such as onCreate and onStart methods. Via these methods,
Android framework is able to control the execution of apps and
maintain their lifecycle.
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Figure 1: Activity Lifecycle, Fragment Lifecycle and the Activity-
Fragment Coordination

Figure 1 shows the lifecycles of activity and fragment in Android.
Each method in Figure 1 represents a lifecycle callback, a method
that gets called given a change of state. Lifecycle transition obeys
certain principles. For instance, an activity with the paused state
could move to the resumed state or the stopped state, or may be
killed by the Android system to free up RAM.

A fragment is a portion of user interface or a behavior that can
be put in an Activity. Each fragment can be modified independently
of the host activity (activity containing the fragment) by performing
a set of changes. For a fragment, it goes through more states than
an Activity from being launched to the active state, e.g., onAttach
and onCreateView states.

The communication between an activity and a fragment needs
to obey certain principles. A fragment is embedded in an activity
and could communicate with its host activity after being attached.
The allowed states of a fragment are determined by the state of
its host activity. For instance, a fragment is not allowed to reach
the onStart state before its host activity enters the onStart state. A
violation of these principles may cause crashes in Android apps.

3 A MOTIVATING EXAMPLE

We illustrate the workflow of our automated repair technique by
showing an example app, and its crash. The crash occurred in Tran-
sistor, a radio app for Android with 63 stars in GitHub. According
to the bug report!, Transistor crashes when performing the event
sequence shown in Figure 2: (a) starting Transistor; (b) shutting it
down by pressing the system back button; (c) starting Transistor
again and changing the icon of any radio station. Then, it crashes
with a notification “Transistor keeps stopping”(d). Listing 1 shows
the log relevant to this crash. The stack trace information in Listing 1
suggests that the crash is caused by I1legalStateException.

Uhttps://github.com/y20k/transistor/issues/21
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Figure 2: Continuous snapshots of a crash in Transistor.

Our automated repair framework, Droix performs analysis of
the Activity-Fragment coordination (dashed lines in Figure 1) and
reports potential violations in the communication between a frag-
ment and its host activity. Our manual analysis of the source code
for this app further reveals that the crash occurs because the frag-
ment attempts to call an inherited method startActivityForResult
at line 482, which indirectly invokes a method of its host activity.
However, the fragment is detached from the previous activity dur-
ing the termination of the app and needs to be attached to a new
activity in the restarting app. The method invocation occurs before
the new activity has been completely created and leads to the crash.

FATAL EXCEPTION: main Process: org.y20k.transistor , PID: 2416
java.lang.IllegalStateException:

Fragment MainActivityFragment{82elbec} not attached to Activity
at android ... startActivityForResult (Fragment.java:925)
at y20k...selectFromImagePicker (MainActivityFragment.java:482)

Listing 1: Stack trace for the crash in Transistor

+if(getActivity () !=null)
482: startActivityForResult(pickImageIntent , REQUEST LOAD_IMAGE) ;

Listing 2: Droix’s patch for the crash in Transistor

—startActivityForResult (pickImagelntent , REQUEST LOAD_IMAGE) ;
482: +mActivity . startActivityForResult (pickImagelntent ,
REQUEST_LOAD_IMAGE) ;

Listing 3: Developer’s patch for the crash in Transistor

Droix defines specific repair operators based on our study of
crashes in Android apps and the Android API documentation (see
Section 4). One of the transformation operators identified through
our study, GetActivity-check, is designed to check if the ac-
tivity containing the fragment has been created. The condition
getActivity()!=null prevents the scenario where a fragment
communicates with its host activity before the activity is created.

Listing 2 shows the patch automatically generated by Droix.
With the patch, method startActivityForResult will not be in-
voked if the host activity has not been created. The related function
(i.e., changing station icon) works well after our repair. In con-
trast, although the developer’s patch does not crash on the given
input, it introduces regressions. Listing 3 shows the developer’s
patch where mActivity is a field of the fragment referencing its
host activity. When restarting the app, this field still points to
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the previously attached activity. The developer’s patch explicitly
invokes startActivityForResult method of the previously at-
tached activity instead of the newly created activity. After applying
the Developer’s patch, a user reports that the system back button
no longer functions correctly when changing the station icon (i.e.,
pressing the back button does not close the app but mistakenly
opens a window for selecting images). Specifically, the user reports
the following event sequence when the app fails to function prop-
erly: open Transistor — tap to change icon — press
back twice — open Transistor — tap to change icon —
press back twice. We test the APK generated by Droix with this
event sequence, and we observe that our fixed APK does not exhibit
the faulty behavior reported by the user. Hence, we believe that the
patch generated by Droix works better than the developer’s patch.

4 IDENTIFYING CAUSES OF CRASHES IN
ANDROID APPLICATIONS

To study the root causes of crashes in Android apps, we man-
ual inspect Android apps on GitHub and API documentation (as
prior work has showed success in finding bugs via API documen-
tation [48]). Our goal is to identify a set of common causes for
Android crashes. We first obtain a set of popular Android apps by
crawling GitHub and searching for the word “android app” written
in Java using the GitHub API 2. For each app repository, we search
for closed issues (resolved bug report) with the word “crash”. We
focus on closed issues because those issues have been confirmed by
the developers and are more likely to contain fixes for the crashes.
From the list of closed issues on app crashes, we further extract
issues that contain at least one corresponding commit associated
with the crash. The final output of our crawler is a list of crashes-
related closed issues that have been fixed by the developers. Overall,
our crawler searches through 7691 GitHub closed issues where 1155
(15%) of these issues are related to crashes. The relatively high per-
centage of crash-related issues indicates the prevalence of crashes
in Android apps. Among these 1155 issues, 107 of these issues from
15 different apps have corresponding bug-fixing commits. We man-
ually analyzed all issues and attempted to answer two questions:

Q1: What are the possible root causes and exceptions that lead to
crashes in Android apps?

Q2: How does the complexity of activity/fragment lifecycle affect
crashes in Android apps?

We study Q2 because a survey of Android developers suggests
that the topmost reasons (47%) for NullPointerException in An-
droid apps occur due to the complexity of activity/fragment life-
cycle [18]. Our goal is to identify a set of generic transformations
that are often used by Android developers in fixing Android apps.
To gain deeper understanding of the root causes of each crash (Q1)
and to identify the affect of activity/fragment lifecycle on the likeli-
hood of introducing crashes (Q2), we manually examine lifecycle
management rules in the official Android API documentations 3.

Our study shows that the most common exceptions are:

o NullPointerException (40.19%)
o IllegalStateException (7.48%)

Zhttps://developer.github.com/v3/
Shttps://developer.android.com/guide/components/activities/activity-lifecycle.html
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Table 1: Root cause of crashes in Android apps

Category Specific reason Description GitHub Issues (%) Frequent Exception Type Category Total (%)
Configuration changes activity recreation during configuration changes 5.61 NullPointer
Stateloss transaction loss during commit 2.80 IllegalState

Lifecycle GetActivity activity-fragment coordination 2.80 IllegalState 14.02
Activity backstack inappropriate handling of activity stack 1.87 Illegal Argument
Save instance uninitialized object instances in onSavelnstance() callback 0.93 IllegalState
Resource-related resource type mismatches 10.28 NullPointer

Resource 16.82

limited resources
retrieve a wrong resource id

Resource limit
Incorrect resource

4.67 OutOfMemory
187  SQLite

Activity-related
View-related
Intent-related
Unhandled callbacks

missing activities
missing views
missing intents
missing callbacks

Callback

7.48 NullPointer
6.54 NullPointer
3.74 NullPointer 17.76
2.80 NullPointer

Missing Null-check
External Service/Library

missing check for null object reference
defects in external service/library
Others ~ Workaround temporary fixes for defect

API changes API version changes

Others project-specific defects

12.15 NullPointer
8.41 NullPointer

4.67 IndexOutOfBound 52.34
2.80  SQLite
24.30 -

The high percentage of NullPointerException confirms with the
findings of prior study of Android apps [18].

Table 1 shows the common root causes of crashes in Android
apps we investigated. Column “Category" in Table 1 describes the
high-level causes of the crashes, while the “Specific reasons" col-
umn gives the specific causes that lead to the crash. The last column
(Category Total (%)) presents the total percentage of issues that fits
into a particular category. Overall, 14.02% of crashes in our study
occur due to the violation of management rules for Android Activ-
ity/Fragment lifecycles. The reader can refer to Section 5 on the
explanation of these lifecycle-related crashes. Meanwhile, 16.82% of
the investigated crashes are due to improper handling of resources,
including resources either not available (Resource-related) or lim-
ited resources like memory (Resource limit). Furthermore, improper
handling of callbacks contributes to 17.76% of crashes. Note that
this “Callback" category denotes implementation-specific problems
of different components in Android library (e.g., Activity, View and
Intent). Among 40.19% of NullPointerExceptions thrown in these
crashing apps, only 12.15% is related to missing the check for null
objects (Missing Null-check). Interestingly, 4.67% of the GitHub is-
sues include comments by Android developers acknowledging the
fact that the patch issued are merely temporary fixes (Workaround)
for these crashes that may require future patches to completely
resolve the crash.

Overall, Table 1 shows that the complexity of activity/fragment
lifecycle and incorrect resource handling are two general causes
of crashes in Android apps. Moreover, “Missing Null-check" in the
“Other" category also often leads to crashes in Android apps.

5 STRATEGIES TO RESOLVE CRASHES

Our manual analysis of crashes in Android apps identifies eight
program transformation operators which are useful for repairing
these crashes. Table 2 gives an overview of each operator derived
through our analysis. As “Missing Null-check" is one of the common
causes of crashes in Table 1, we include this operator (S7: Null-
check) in our set of operators. Another frequently used operator
(5%) that fixes crashes that occur across different categories in
Table 1 is inserting exception handler (S8: Try-catch) which we
also include into our set of operators. We now proceed to discuss

Table 2: Supported Operators in Droix

Operator Description

Insert a condition to check whether the activity containing

$1: GetActivity-check the fragment has been created.

S2: Retain object Store objects and load them when configuration changes

S3: Replace resource id Replace resource id with another resource id of same type.

Replace the current method call with another method call

$4: Replace method with similar name and compatible parameter types.

S5: Replace cast Replace the current type cast with another compatible type.

S6: Move stmt Removes a statement and add it to another location.

S7: Null-check Insert condition to check if a given object is null.

S8: Try-catch Insert try-catch blocks for the given exception.

other program transformation operators in Table 2 and the specific
reasons of crashes associated with each operator in this section.
Retain stateful object Configuration changes (e.g., phone rota-
tion and language) cause activity to be destroyed and recreated
which allows apps to adapt to new configuration (transition from
onDestroy()— onCreate()). According to Android documenta-
tion 4, developer could resolve this kind of crashes by either (1)
retaining a stateful object when the activity is recreated or (2) avoid-
ing the activity recreation. We choose the first strategy because it is
more flexible as it allows activity recreations instead of preventing
the configuration changes altogether. Listing 4 presents an example
that explains how we retain the Option object by using the saved
instance after the configuration changes to prevent null reference
of the object (S2: Retain object).

public void onCreate (Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

+ setRetainlnstance(true);// retain this fragment

}

// new field for saving the object

+ private static Option saveOption;

public View onCreateView (LayoutInflater inflater ,
ViewGroup container, Bundle savedInstanceState) {
// saving and loading the object
+ if(option!=null){ saveOption = option; }
+ else{ option = saveOption; }
switch (option.getButtonStyle()) { //crashing point

Listing 4: Example of handling crashes during configuration
changes

“https://developer.android.com/guide/topics/resources/runtime-changes.html
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Commit transactions Each fragment can be modified indepen-
dently of the host activity by performing a set of changes. Each
set of changes that we commit (perform requested modifications
atomically) to the activity is called a transaction. Android docu-
mentation > specifies rules to prohibit committing transactions at
certain stages of the lifecyle. Transactions that are committed in
disallowed stages will cause the app to throw an exception. For
example, invoking commit() after onSaveInstanceState() will
lead to I11egalStateException since the transaction could not be
recorded during this stage. We employ two strategies for resolving
the incorrect commits: (S6: Move stmt) moving commit() to a le-
gal callback (e.g., onPostResume()), (S4: Replace method) replacing
commit() with commitAllowingStatelLoss().

Communication between activity and fragment The lifecycle
of a fragment is affected by the lifecycle of its host activity °. For
example, in Figure 1, when an activity is created (onCreate()), the
fragment cannot proceed beyond the onActivityCreated() stage.
Invoking getActivity() in the illegal stage of the lifecycle will
return null, since the host activity has not been created or the frag-
ment is detached from its host activity. A NullPointerException
may be thrown in the following execution. We employ two strate-
gies for resolving this problem: (S1: GetActivity-check) inserting
condition if(getActivity()==null), and (S6: Move stmt) mov-
ing getActivity() to another stage (when the host activity is
created and the fragment is not detached from the host activity) of
the fragment lifecycle.

Retrieve wrong resource id Android resources are the additional
files and static content used in Android source code (e.g., bitmaps,
and layout) 7. A resource id is of the form R.x.y where x refers to
the type of resource and y represents the name of the resource.
The resource id is defined in XML files and it is the parameter of
several Android API (e.g., findViewbyId(id) and setText(id)).
Android developers may mistakenly use a non-existing resource
id which leads to Resources$NotFound exception. Listing 5 shows
a scenario where the developers change the string resource id (S3:
Replace resource id).

— int msgStrld
+ int msgStrld

R.string.confirmation_remove_alert;
R.string.confirmation_remove_file_alert;

Listing 5: Example of handling crashes due to wrong resource id

Incorrect type-cast of resource To implement Ul interfaces, an
Android API 8 (findViewById(id)) could be invoked to retrieve
widgets (view) in the UL As each widget is identified by attributes
defined in the corresponding XML files, an Android developer
may misinterpret the correct type of a widget, resulting in crashes
due to ClassCastException. We repair the crash by replacing the
type cast expression with correct type (S5: Replace cast). Listing 6
shows an example where the ImageButton object is incorrectly
type caster.

— mDefinition =(TextView ) findViewById (R.id . definition);
+ mDefinition =(ImageButton)findViewById (R.id. definition);

Listing 6: Example fix for incorrect resource type-cast

Shttps://developer.android.com/reference/android/app/FragmentTransaction.html
®https://developer.android.com/guide/components/fragments.html
"https://developer.android.com/guide/topics/resources/accessing-resources.html
8https://developer.android.com/reference/android/app/Activity.html
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6 METHODOLOGY

Figure 3 presents the overall workflow of Droix’s repair framework.
Droix consists of several components: a test replayer, a log analyzer,
a mutant generator, a test checker, a code checker, and a selector.
Given a buggy APKp and Ul event sequences U extracted from its
bug report, Droix produces a patched APKp that passes U and has
the minimum number of properties violations.

Droix fixes a crash using a two-phase approach. In the first phase,
Droix generates an instrumented APK7 to log all executed callbacks.
With the instrumented APK, Droix replays the Ul event sequences
U on a device. The log analyzer parses the logs dumped from the
execution, extracts program locations Locs from the stack trace, and
identifies test-level property Rt,rig using the recorded callbacks.

In the second phase, Droix decompiles APKp to the intermedi-
ate representation. Then, our mutant generator produces a set of
candidate apps (stored in the mutant pool) by applying a set of
operators at each location ! in Locs. For each operator op, our code
checker records code-level property Rc.,,,4 based on the program
structure of [ and the information in thrown exception. For each
candidate APK ¢, Droix reinstalls APK ¢ onto the device and replays
U on APKc. Then, our log analyzer parses the dumped logs that
include the execution information of callback methods to extract
new buggy locations and information of test-level property Rt ;pn4-
Given as input Rt.,,q for APK, the test checker compares Rtorig
with Rt 4,4 to check if APK ¢ introduces any new property viola-
tions. Finally, our evaluator analyzes Rt 4,4 and Rcqqg to compute
the number of property violations and passes the results to the
selector, which chooses the best app as the final fixed APK.

6.1 Test with Ul Sequences

Existing techniques in automated program repair typically rely on
unit tests [32] or test scripts [28, 35, 53] to guide repair process. As
additional UI tests for checking correctness are often unavailable,
Droix uses user event sequences (e.g., clicks and touches) as input
to repair buggy apps, which introduces new challenges: (1) these
event sequences are often not included as part of the source code
repository and reproducing these event sequences is often time-
consuming; (2) ensuring that a recorded sequence has been reliably
replayed multiple times is difficult as UI tests tend to be flaky (the
test execution results may vary for the same configuration).

To reduce manual effort in obtaining UI sequences, Droix sup-
ports several kinds of event sequences, including: (1) a set of actions
(e.g., clicks, and touches) leading to the crash which can be recorded
using monkeyrunner ° GUI, (2) a set of Android Debug Bridge (adb)
commands 1°, and (3) scripts with a mixture of recorded actions
and adb commands. Non-technical users could record their actions
with monkeyrunner while Android developers could write adb com-
mands to have better control of the devices (e.g., rotate screen).

Droix employs several strategies to ensure that the UI test out-
come is consistent across different executions [36]. Specifically, for
each Ul test, Droix automatically launches the app from the home
screen, inserts pauses in between each event sequence, terminates

“Monkeyrunner contains API that allows controlling Android devices:
https://developer.android.com/studio/test/monkeyrunner/index.html

YADB is a command-line tool that are used to control Android devices:
https://developer.android.com/studio/command-line/adb.html
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Figure 3: Droix’s Android Repair Framework

Table 3: Code-level and Test-level Properties Enforced in Droix

Level Type Description

Well-formedness
Code-level Bug hazard
Exception Type

Verify that a mutated APK is compilable and the structural type of the program matches the requires context of the selected operator.
Checks whether a transformation violates Java exception-handling best practices.
Checks whether a transformation matches a given exception type. (e.g., Insert Null-check should be used for fixing NullPointerException exclusively)

Lifecycle

Checks that the event transition matches with the activity and fragment lifecycle model (Figure 1).

Test-level ~ Activity-Fragment Checks that the interaction between a fragment and its parent activity matches the activity-fragment coordination model (dashed lines in Figure 1)
Commit Checks that a commit of a fragment’s transactions is performed in the allowed states (i.e., after an activity’s state is saved).

the apps after test execution, and brings the android device back to
home screen (ensure that the last state of the device is the same as
the initial state of the device). Moreover, Droix executes each Ul
test for at least three times in which each test execution has pauses
of different duration (5, 10, 15 seconds) inserted in between events.

6.2 Fault Localization

Our fault localization step pinpoints faulty program locations lead-
ing to the crash. Since our approach does not require source code
nor heavy test suite, we leverage stack trace information for fault
localization. The stack trace contains (1) the type of exceptions
being thrown, (2) the specific lines of code where the exception is
thrown, and (3) the list of classes and method calls in the runtime
stack when the exception occurs. We use stack trace information
for fault localization because (1) this information is often included
in the bug report of crashes (which allows us to compare the actual
exception thrown with the expected exception) and (2) prior study
has shown the effectiveness of using stack trace to locate Java run-
time exceptions [44]. The stack trace information is given to our
search algorithm for fix localization. When searching for complex
fixes, once a fix using initial stack trace is generated, it may enable
other crashes, leading to new stack traces and new fixes.

6.3 Code Checker and Test Checker

Instead of relying solely on the UI test outcome, Droix enforces
two kinds of properties: code-level properties (properties that are
checked prior to test execution) and test-level properties (properties
that are verified during/after test execution). These properties are
important because (1) they serve as additional test oracles for vali-
dating candidate apps; and (2) they could compensate for the lack
of passing Ul tests.

Table 3 shows different properties enforced in Droix. Bug hazard
is a circumstance that increases likelihood of a bug being present
in a program [13]. A recent study of Android apps reveals several

exception handling bug hazards and Java exception handling best
practices [18]. Given an exception E that leads to a crash, our code
checker categorizes E as either a checked exception, an unchecked
exception, or an error to determine if we could insert a handler (try-
catch block) for E. According the Java exception handling best prac-
tice “Error represents an unrecoverable condition which should not
be handled”, hence, our code checker considers inserting handler
for runtime errors a hard constraint and eliminates such patches. In
contrast, inserting handlers for unchecked and checked exceptions
are encoded as soft constraints that could affect the score of a mu-
tant. Meanwhile, we encode the well-formedness property and the
exception type property as hard constraints that should be satisfied.

Given a previous lifecycle callback prev and a current lifecy-
cle callback curr, our test checker verifies if prev — curr obeys
the activity/fragment lifecycle management rules (Figure 1). Droix
considers all test-level properties as soft constraints because these
properties may not be directly related to the crash (e.g., resource-
related crashes).

Algorithm 1: Patch generation algorithm

Input: Buggy APKp, Operators Op, Population size PopSize, Ul test U,
Program Locations Locs

Input: Fitness Fit: < Patch, Rc,Rt >—> Z

Result: APK that passes U and contains least property violations

Pop « initialPopulation(APKp, PopSize);

while AIC € Pop.C passes U do
Mutants < Mutate(Pop, Op, Locs); // apply Op at I € Locs
/* select mutant with least Rc and Rt violations */
Pop « Select(Mutants, PopSize, Fit);

end

6.4 Mutant Generation and Evaluation

Droix supports eight operators derived from our study of crashes in
Android apps (Section 4). Table 2 shows the details of each operator.
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Algorithm 1 presents our patch generation algorithm. Droix
leverages (u+A1) evolutionary algorithm with y = 40 and A = 20.
Given as input population size PopSize, fitness function Fit, and a
list of faulty locations Locs, our approach iteratively generates new
mutants by applying one of the operators listed in Table 2 at each
location in Locs, evaluates each mutant by executing the input UI
event sequences U, and computes the number of code-level property
Rc and test-level property Rt violations. The generate-and-validate
process terminates when either there exists at least one mutant in
the population that passes U or the time limit is exceeded. Our patch
generation algorithm differs from existing approaches that use
evolutionary algorithm [24, 53] in which we use a different patch
representation and fitness function. Specifically, each mutant is an
APK in our representation. Instead of using the number of passing
tests as the fitness function, our fitness function Fit computes the
number of code-level and test-level property violations.

7 IMPLEMENTATION

Our Android repair framework leverages various open source tools
to support different components. Specifically, our log analyzer uses
Logcat 1, a command-line tool that generates logs when events
occur on an Android device. We implement the eight operators in
Table 2 on top of the Soot framework (v2.5.0) [25]. Soot is a Java
optimization framework that supports analysis and transformation
of Java bytecode. Dexpler, a module included in Soot leverages
an Dalvik bytecode disassembler to produce Jimple (a Soot rep-
resentation) which enables reading and writing Dalvik bytecode
directly [11]. We use the Dexpler module in Soot for our decom-
piler component in Figure 3. To support the “S4: Replace method"
operator, we use the Levenshtein distance to select a method with
similar method name and compatible parameter types. Our imple-
mentation for the “S3: Replace resource id" operator uses Android
resource parser in FlowDroid [7] to obtain a resource id of the same
type. As each compiled APK needs to be signed before installation,
we use jarsigner '2 for signing the compiled APK. We re-install
the signed APK onto the device using adb commands 3. Instead of
uninstalling and re-installing each signed app, app re-installation
allows us to keep the app data (e.g. account information and set-
tings) to save time in re-entering the required information during
subsequent execution of U.

8 SUBJECTS

While there are various benchmarks used in evaluating the effective-
ness of automated testing of Android applications [4, 5, 15, 30] and
the effectiveness of repair approaches for C programs [27, 50, 57],
a recent study [16] showed that the crashes in these benchmarks
cannot be adequately reproduced by existing Android testing tools.
Meanwhile, Android-specific benchmark like DROIDBENCH [7]
does not contain real Android apps and it is designed for evalu-
ating taint-analysis tools. Although empirical studies on Android
apps [12, 18] investigated the bug reports of real Android apps,

https://developer.android.com/studio/command-line/logcat.html
2http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html
3https://developer.android.com/studio/command-line/adb.html
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none of these studies try to replicate the reported crashes. There-
fore, all existing benchmarks cannot be used for evaluating the
effectiveness of analyzing crashes in Android apps.

We introduce a new benchmark, called DroixBench that con-
tains 24 reproducible crashes in 15 real-world Android apps. Apart
from evaluating Droix, this benchmark could be used to assess
the effectiveness of detecting and analyzing crashes in Android
apps. To facilitate future research on analysis of crashes, we made
DroixBench publicly available at: https://droix2017.github.io/.

DroixBench is a new set of Android apps for evaluating Droix.
Apps used for deriving transformation operators in Section 4 are
excluded from DroixBench to avoid the overfitting problem in the
evaluation. Specifically, we modified our crawler to find the most
recent issues (bug reports) on Android apps crashes on GitHub. Our
goal is to identify a set of reproducible crashes in Android apps.
To reduce the time in manual inspection of these bug reports, our
crawler excludes (1) issues without any bug-fixing commits (which
is essential for comparing patch quality); (2) unresolved issues (to
avoid invalid failures); and (3) non-Android related issues (e.g., 10S
crashes) . This step yields more than 300 GitHub issues. We further
exclude defects that do not fulfill the criteria below:
Device-specific defects. We eliminate defects that require specific
versions/brands of Android devices.

Resource-dependent defects. We eliminate defects that require
specific resources (e.g., making phone calls) as we may not be able
to replicate these issues easily on an Android emulator.
Irreproducible crashes. We eliminate crashes that are deemed
irreproducible by the developers.

9 EVALUATION

We perform evaluation on the effectiveness of Droix in repairing
crashes on real Android apps and we compare the quality of Droix’s
patch with the quality of the human patch. Our evaluation aims to
address the following research questions:

RQ1 How many crashes in Android apps can Droix fix?
RQ2 How is the quality of the patches generated by Droix com-
pared with the patches generated by developers?

9.1 Experimental Setup

We evaluate Droix on 24 defects from 15 real Android apps in
DroixBench. Table 4 lists information about the evaluated apps.
The “Type” column contains information about the specific type
of exception that causes the crash, whereas the “TestEx” column
represents the time taken in seconds to execute the Ul test. Overall,
DroixBench contains a wide variety of apps of various sizes (4-115K
lines of code) and different types of exceptions that lead to crashes.

As Droix relies on randomized algorithm, we use the same pa-
rameters (10 runs for each defect with PopSize=40 and a maximum
of 10 generations) as in GenProg [26] for our experiments. In each
run, we report the first found among the lowest score (minimum
property violations) patches. Each run of Droix is terminated after
one hour or when a patch with minimal violations is generated. All
experiments were performed on a machine with a quad-core Intel
Core i7-5600U 2.60GHz processor and 12GB of memory. All apps
are executed on a Google Nexus 5x emulator (Android API25).
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Table 4: Subject Apps and Their Basic Statistics

App Name Description Version LOC Type TestEx(s)
Transistor radio plavers 1.2.3 4K NullPointer 42.1
play 1.1.5 4K IllegalState 40.1

. . 1.17.1 54K NullPointer 37.2
Pix-art photo editor 1170 60K NullPointer 42.0
. poet writing 1.18.2 12K NullPointer 423
PoetAssistant helper 1104 6K SQLite 60.9
Anvmemo flashcard learnin 10.10.1 29K NullPointer 50.5
Y & 109922 33K NullPointer 83.9
N . 2.8.1 73K IllegalState 50.6
AnkiDroid flashcard learning 2761 73K ClassCast 372
Fdroid opensoure app 0.103.2 50K IllegalState 38.7
repository 0.98 38K SQLite 37.3

Yalp app repository 0.17 11K NullPointer 57.4
LabCoat GitLab client 2.24 45K NullPointer 49.2
finance expense 214 42K IllegalArgument 32.0

GnuCash tracker P 2.1.3 40K NullPointer 37.2
2.0.5 37K IllegalArgument 42.2

NoiseCapture noise evaluator 042b 10K NullPointer 2.5
P 042b 10K ClassCast 412
ConnectBot  secure shell client 1.9.2 26K OutOfBounds 57.4
K9 email client 5.111 115K NullPointer 42.2
OpenMF Mifosx client 1.0.1 75K IllegalState 134.0
Transdroid torrents client 2.5.0b1 37K NullPointer 45.9
Beem communication tool 0.1.7rc1 21K NullPointer 61.3

For each defect, we manually inspect the source code of human

patched program and the source code decompiled from Droix’s
patched program. If the source code of automatically patched pro-
gram differs from the human patched program, we further inves-
tigate the UI behavior of patched programs by installing both the
human generated APK and the automatically generated APK onto
the Android device. For each APK, we manually perform visual
comparison of the screens triggered by a set of available UI actions
(clicks, swipes) after the crashing point.
Definition 1. Given the source code of human patched program
Srchumans the code of an automatically generated patch Srcp,qchines
the compiled APK of human patched program APK p,;;man, the com-
piled APK of automatically generated patch APK ,,4chine, We mea-
sure patch quality using the criteria defined below:

(C1) Syntactically Equivalent. Src,,,pine is “Syntactically Equiv-
alent” if Srcy,qchine and Srcpyman are syntactically the same.

(C2) Semantically Equivalent. Src,,,chine is “Semantically Equiv-
alent” if Srcp,qchine and Srcpyman are not syntactically the same
but produce the same semantic behavior.

(C3) UI-behavior Equivalent. APK ,, pine is “Ul-behavior Equiv-
alent” to APK jyman, if the Ul-state at the crashing point after ap-
plying the automated fix is same as the Ul-state at the crashing
point after applying the human patch. Two Ul-state are considered
to be same if their Ul layouts are same, the set of events enabled are
same, and these events again (recursively) lead to Ul-equivalent
states. Ul-behavior equivalence of APK},,an against APK ,,4chine
is checked manually in our experiments.
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(C4) Incorrect. Welabel a APK ,,,;.pine as “Incorrect” if APK ,4chine
leads to undesirable behavior (e.g., causes another crash) but this
behavior is not observed in APKp,, man-

(C5) Better. We label a APK ;,chine as “Better” when APK pyman
leads to regression witnessed by another UI test Ugr whereas
APK achine passes URr.

Formally, C1 = C2 A C2 = (3, hence, a generated patch
that is syntactically equivalent to the human patch is superior to
both semantically equivalent patch and Ul-behavior equivalent
patch. We note that, in general, checking whether a patch is se-
mantically equivalent to the human patch (C2) is an undecidable
problem. However, in our manual analysis, the correct behavior for
all evaluated patches are well-defined. While C1 and C2 investigate
the behavior of patches at the source-code level, we introduce C3
to compare the behavior of patches at the GUI-level. We consider
C3 because our approach uses GUI tests for guiding the repair pro-
cess. Furthermore, since our approach does not require source code,
direct manual checking of source code may be sometimes tedious.

9.2 Evaluation Results

Table 5 shows the patch quality results for Droix. The “Time” col-
umn in Table 5 indicates the time taken in seconds across 10 runs
for generating the patch before the one-hour time limit is reached.
On average, Droix takes 30 minutes to generate a patch. Meanwhile,
the “Repair” column denotes the number of plausible patches (APKs
that pass the UI test) generated by Droix. Overall, Droix generates
15 plausible patches (rows marked with +/) out of 24 evaluated de-
fects. Our analysis of the 9 defects that are not repaired by Droix
reveals that all of these defects are difficult to fix because all the
corresponding human patches require at least 10 lines of edits.
The “Fix type” column in Table 5 shows the operator used in
each patch (Refer to Table 2 for the description of each operator).
The “Null-check" operator is the most frequently used operators
(used in six patches and 4/6=67% of these patches are syntactically
equivalent to the human patches). These results match with the high
frequency of “Null-check” operator in our empirical study (Table 1).
Interestingly, we also observe that the “GetActivity-check" operator
tends to produce high quality patches because this operator aims
to enforce the “Activity-Fragment" property that checks for the
coordination between the host activity and its embedded fragment.
The “Syntactic Equiv.” column in Table 5 shows the patches
that fulfill C1, while the “Semantic Equiv.” column denotes patches
that fulfill C2. Similarly, the “Ul-behavior Equiv” column demon-
strates the number of fixed APKs that fulfill the C3 criteria. Par-
ticularly, we consider the patch generated by Droix for Anymemo
v10.9.922 as “Semantically Equivalent” because both patches use an
object of the same type retained before configuration changes to
fix a NullPointerException but the object is retained in different
program locations (i.e., not syntactically equivalent). Meanwhile,
Droix generates three APKs that are Ul-behavior equivalent to
the human generated APKs. Interestingly, we observed that al-
though the human patches for these defects require multi-lines
fixes, the bug reports for these Ul-behavior equivalent patches in-
dicate that specific conditions are required to trigger the crashes
(e.g.,mSpinner.getSelectedItemId() !=INVALID_ROW_ID for the
GnuCash v2.0.5 defect). As these conditions are difficult to trigger
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Table 5: Patch Quality Results

App Version Time (s)  Fix type Repair  Syntactic Equiv. ~ Semantic Equiv. ~ Ul-behavior Equiv. Others
Transistor 2 616 B
1.15 987 GetActivity-check v better(®)
. 1.17.1 1164 -
PixArt 1.17.0 1525 Null-check N
. 1.18.2 955 Null-check v A
PoetAssistant 1104 3600 -
Anymemo 10.10.1 2104 -
Y 109922 1336 Retain Object v o)
. . 2.8.1 3600 -
AnkiDroid 2.7b1 3600 Try-catch Vv text missing(X)
. 0.103.2 2293 Replace method Vv *
Fdroid 0.98 518 -
Yalp 0.17 2970
LabCoat 224 2074 Null-check v *
2.1.3 360 -
GnuCash 2.0.5 1492 Try-catch vV A
2.14 3600 -
ConnectBot 1.9.2 572 Try-catch v text missing(X)
. 0.4.2b 340 Null-check Vv *
NolseCaptureOAAzb 520 Replace cast v *
K9 5.111 1718 Try-catch Vv crash(X)
OpenMF 1.0.1 3600 GetActivity-check Vv *
Beem 0.1.7rc1 2378 Null-check Vv *
Transdroid ~ 2.5.0b1 1315 Null-check v *
24 15 7 1 3 4

from the Ul level, synthesizing precise conditions is not required
for ensuring Ul-behavior equivalent.

The “Others” column in Table 5 includes one patch that is bet-
ter than the human patch (marked as @) and three patches that
are incorrect (marked as X). We consider the patch for Transistor
v1.1.5 to be better than human patch as it passes regression test
stated in the bug report whereas the human patch introduces a
new regression (See Section 3 for detailed explanations). For two
of the incorrect patches, we notice that some texts that appear
on the screen of human APKs are missing in the screen of fixed
APKs (text missing). Meanwhile, the crash in k9 v5.111 occurs due
to an invalid email address for a particular contact. In this case,
the human APK treats the contact as a non-existing contact while
the patched APK displays the contact as unknown recipient and
crashes when the unknown recipient is selected. We think that
both the human APK and the patched APK could be improved (e.g.,
prompt the user to enter a valid email address instead of ignoring
the contact). Although the patch generated by Droix for k9 violates
the bug hazard property (catching a runtime exception), we select
this patch as no other patches are found within the time limit.

Droix fixes 15 out of 24 evaluated crashes, seven of these
fixes are the same as the human patches, one repair is semanti-
cally equivalent, three are Ul-behavior equivalent. In one rare
case, we generate better repair.

10 THREATS TO VALIDITY

We identify the following threats to the validity of our experiments:
Operators used. While we derive our operators from frequently

used operators in fixing open source apps and from Android API
documentation, our set of operators is not exhaustive.
Reproducing crashes. We manually reproduce each crash in our
proposed benchmark. As we rely on Android emulator for repro-
ducing crashes, the crashes in our benchmark are limited to crashes
that could be reliably reproduced on Android emulators. Crashes
that require specific setup (e.g., making phone calls) may be more
challenging or impractical to replay.

Crashes investigated. As we only investigate open source An-
droid apps in our empirical study and in our proposed benchmark,
our results may not generalize to closed-source apps. We focus on
open source apps because our patch analysis requires the availabil-
ity of source codes. Nevertheless, as Droix takes as input Android
APK, it could be used for fixing closed source apps. We leave the
empirical evaluation of closed source apps as our future work.
Patch Quality. During our manual patch analysis, at least two
of the authors analyze the quality of human patches versus the
quality of automatically generated patches separately and meet to
resolve any disagreement. As most bug reports include detailed
explanations of human patches and the expected behavior of the
crashing UI test, the patch analysis is relatively straightforward.

11 RELATED WORK

Testing and Analysis of Android Apps. Many automated tech-
niques (AndroidRipper [4], ACTEVE [5], A3E [9], Collider [23], Dyn-
odroid [30], FSMdroid [47], Fuzzdroid [43], Orbit [56], Sapienz [31],
Swifthand [15], and work by Mirzaei et al. [37]) are proposed to gen-
erate test inputs for Android apps. Our approach is orthogonal to
these approaches and the tests generated by these approaches could
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serve as inputs to our Android repair system. Several approaches fo-
cus on reproducing crashes in Java projects [14, 46, 55]. Meanwhile,
CRASHSCOPE [38] automatically detects and reproduces crashes in
Android apps. Our benchmark with 24 reproducible crashes could
be used for evaluating the effectiveness of these approaches. Simi-
lar to Flowdroid [7], we implement our fix operators on top of the
Soot framework, and we use activity lifecycle information for our
analysis of Android apps. Instead of considering only the activity
lifecycle as in Flowdroid, we also encode fragment lifecycle and
activity-fragment coordination as test-level properties. RERAN [22]
could precisely record and replay Ul events on Android devices,
including gestures (e.g., multitouch). While our approach allows
UI sequences in forms of scripts recorded in the user interface,
the record-and-replay mechanism in RERAN could allow Droix
to handle more complex Ul events. Although our code checker
incorporates some Java exception handling best practices listed in
recent study of Android apps [18], our empirical study of crashes
that occur in Android apps goes beyond prior study by performing
a thorough investigation of the common root causes of Android
crashes.

Automated Program Repair. Several techniques (Angelix [35],
ASTOR [33], ClearView [41], Directfix [34], GenProg [26], PAR [24],
Prophet [28], NOPOL [54], relifix [49]) have been introduced to
automatically generate patches. There are several key differences
of our Android repair framework compared to other existing re-
pair approaches. Firstly, instead of relying on the quality of the
test suite for guiding the repair process, our approach augments
a given Ul test with code-level and test-level properties for rank-
ing generated patches. Secondly, existing approaches could not
handle flaky UI tests as they may misinterpret the test outcome
of UI tests and may mistakenly produce invalid patches. Finally,
our repair framework modifies compiled APK and each test execu-
tion is performed remotely on Android emulators, whereas other
approaches modify source code directly where each test is being
executed on the same platform as other components of the repair
system. Other studies for automated repair use benchmark for C
programs [27, 50, 57, 58], whereas Droixbench contains a set of
reproducible crashes for Android apps. QACrashFix [19] and work
by Azim et al. [8] use Android apps as dataset for experiments,
without any Android-specific study of cause for crashes. Their
repair operators are Android-agnostic. Specifically, QACrashFix
merely add/delete/replace single node in the Abstract Syntax Tree,
wheareas work by Azim et al only inserts fault-avoiding code that
is similar to workaround identified in our study in Section 4. To
eliminate invalid patches, anti-patterns are proposed as a set of
forbidden rules that can be enforced on top of search-based repair
approaches [51]. Although our code-level and test-level properties
could be considered as different forms of anti-patterns that are
examined prior to and after test executions, we use these proper-
ties for selecting mutants that violate fewer properties instead of
eliminating these mutants. Similar to Droix that uses stack trace
information for fault localization, the work of Sinha et al. uses
stack trace information for locating Java exceptions [44]. However,
their approach only supports analysis of Nul1lPointerException,
whereas our approach could automatically repair different types of
exceptions.
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Other Repairs of Android Apps EnergyPatch fixes energy bugs
in Android apps using a repair expression that captures the resource
expression and releases system calls [10]. The battery-aware trans-
formations proposed in [17] aims to reduce power consumption
of mobile devices. Several approaches generate security patches
for Android apps [39, 59]. While energy bugs and security-related
vulnerabilities may cause crashes in Android apps, we present a
generic framework for automated repair of Android crashes, focus-
ing on crashes that occur due to the misunderstanding of Android
activity and fragment lifecycles.

UI Repair. FlowFixer is an approach that repairs broken workflow
in GUI applications that evolve due to GUI refactoring. SITAR uses
annotated event-flow graph for fixing unusable GUI test scripts [20].
Although Droix takes as input Ul test, it automatically fixes buggy
Android apps rather than the inputs that crash the GUI applications.

12 CONCLUSIONS AND FUTURE WORK

We study the common causes of 107 crashes in Android apps. Our
investigation reveals that app crashes occur due to missing callback
handler (17.76%), improper handling of resources (16%), and viola-
tions of management rules for the Android activity and fragment
lifecycles (14%). Based on our analysis of patches issued by Android
developers to fix these crashes and the Android API documentations
that specify the correct usage of Android API, we derive a set of
lifecycle-aware transformations. To reduce time and effort in fixing
crashes in Android apps, we also introduce Droix, a novel Android
repair framework that automatically generates a fixed APK when
given as input a buggy APK and UI event sequences. To encour-
age future research of Android crashes, we propose DroixBench, a
benchmark that contains 24 reproducible crashes occurring in 15
open source Android apps. Our evaluation on DroixBench demon-
strates that Droix could generate repair for 63% of the evaluated
crashes and seven of the automatically generated patches are syn-
tactically equivalent to the human patches.

Although our repair framework currently performs analysis and
mutation of Android apps on desktop machine while executing Ul
tests on an Android emulator, in the future, it is feasible to have
a standalone repair system that could be installed as an app that
automatically fixes crashes occurring in other apps on Android
devices. Since our GUI interface does not assume any programming
knowledge, our repair framework could potentially benefit general
non-technical users who would like to have their own versions of
fixed apps instead of waiting for the official releases. Moreover, as
we observe that many crashes occur due to the misunderstanding
of activity/fragment lifecycle that are specified in the Android API
documentations, we think that Droix could be used as a plugin that
automatically provides management rule violations together with
patch suggestions to assist developers in understanding Android
API specifications.
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