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Abstract—A fault in large online service systems often triggers
numerous alerts due to the complex business and component
dependencies among services, which is known as “alert storm”.
In a short time, an online service system may generate a huge
amount of alert data. This poses a challenge for on-call engineers
to identify alerts that are associated with a system failure for root
cause analysis. In this paper, we propose DyAlert, a dynamic
graph neural networks-based approach for linking alerts that
might be triggered by a same fault to reduce the burden of on-
call engineers in the fault analysis. Our insight is that alerts
are often triggered by alert propagation when a system failure
occurs, e.g., alert a would lead to the occurrence of alert b.
Whether two alerts should be linked depends on if one alert
is triggered by the propagation of the other. Leveraging this
insight, we design a dynamic graph (namely Alert-Metric Dynamic
Graph) that describes the propagation process of alerts. Based
on the dynamic graph, we train a neural networks-based model
to predict alert links. We evaluate DyAlert with real-world data
collected from an online service system running 85 business units
and about 30,000 different services in a large enterprise. The
results show that DyAlert is effective in predicting alert links and
it outperforms the state-of-the-art approaches with an average
increase of 0.259 in F1-score.

Index Terms—Linked Alerts, Online Service Systems, Graph
Neural Networks

I. INTRODUCTION

Modern online service systems are becoming increasingly
large and complex with the development of technologies such
as cloud computing and microservices architecture [1]. In such
large-scale complex systems, faults (e.g., service interruptions,
performance degradation) are inevitable and may lead to
economic loss, security risk, and other serious consequences.
For example, as the study conducted on 63 data center
organizations in the US shows, the average cost of service
downtime has steadily increased from $505,502 in 2010 to
$740,357 in 2016 [2].

For fast and timely fault detection and diagnosis, observ-
ability tools (e.g. distributed tracing, metrics monitoring) and
alert management systems are widely used in online service
systems. Engineers set many rules in the alert management
system, which continuously detects violations of the rules
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(e.g., transaction success rate below a predefined threshold). If
a rule is violated, the alert management system reports an alert
and notifies an on-call engineer. Based on the alert content, the
on-call engineer confirms whether a fault occurs and handles
the fault.

However, in an online service system, a small number of
faults may lead to many alerts being reported in a short time,
which is called alert storm. This is because faults in complex
systems tend to propagate to multiple components, which is
known as the cascade effect [3], and a single fault may trigger
a number of inter-related alerts. Besides, multiple independent
faults may happen within the same period [4], which leads to
a mixture of alerts generated by different faults. This poses a
huge challenge for on-call engineers to analyze the root cause
of a system failure in a short time.

To reduce the burden of on-call engineers in the fault analy-
sis, existing works usually use alert aggregation [4]–[6] or alert
linking [7], [8] to identify inter-related alerts. Alert aggregation
aims to aggregate alerts caused by the same fault. Alert linking
is to determine whether there is a link relation (e.g., duplicate
link, sequentially related link [7]) between every two alerts.
In addition to their common ability to increase the efficiency
of on-call engineers, the latter can also provide links among
relevant alerts, which give the on-call engineers more clues
and evidence to check and handle the alerts. These alert
linking approaches usually use machine learning methods to
identify linked alerts based on the semantic information [7],
[8] and the system topology information [7] of each alert.
Some approaches [8] represent alerts in an alert storm case as
an alert sequence to describe the order of occurrence of the
alerts.

Our experience shows only using information such as se-
mantics of alert contents and topology of components related
to alerts might be insufficient for alert linking. Alert storm
occurs often due to alert propagation, i.e., one alert triggers
another alert. Whether two alerts should be linked depends
on if one alert is triggered by the propagation of the other.
Thus, alert propagation information is crucial for accurate
alert linking. Unfortunately, it is not considered in existing
approaches [7], [8], which may lead to lower accuracy.

In this paper, we propose DyAlert, a dynamic graph neu-



TABLE I
AN EXAMPLE ALERT

Create Time Severity Related Metric

2022-07-27 20:05:56 P5 success rate
of order creation

Business Unit Convergence Count On-call Engineer
Online Shopping 10 David

Alert Description
[2022-07-27 20:05 Online Shopping Create Order]
The success rate [current value is 89%] in the last two minutes
is continuously less than 95%.

ral networks-based approach, which takes alert propagation
information into account for accurate alert linking. Specif-
ically, DyAlert uses a discrete-time dynamic graph, which
is called AMDG, to describe the alert propagation process.
Each snapshot in the AMDG is a heterogeneous graph that
describes the state of the system when an alert occurs. Based
on the dynamic graph, DyAlert uses heterogeneous k-GNNs
to learn alert spatial information, and GRU to capture the
temporal information of each alert within its active time.
After model training, DyAlert predicts the links among alerts
according to their spatio-temporal representations. To evaluate
the effectiveness and efficiency of DyAlert we conduct a
series of experimental studies on an industrial dataset. The
results show that DyAlert outperforms existing approaches by
41.8% and 10.1% on average in terms of precision and recall
respectively. Moreover, ablation studies further validate the
effectiveness of each component in DyAlert. Also, DyAlert
is efficient in both training and testing.

In summary, our major contributions are as follows:

• We propose DyAlert, a dynamic graph neural networks-
based approach for alert link prediction, which models
the alert propagation process as a discrete-time dynamic
graph and learns alert spatio-temporal representations
from it.

• We conduct experimental studies with real-world alerts
from the alert management system in a large enterprise.
The results demonstrate the effectiveness and efficiency
of DyAlert and confirm the contribution of the compo-
nents in DyAlert.

The remainder of this paper is organized as follows. We
first introduce the background and motivation of our work
in Section II. Then in Section III, we describe the detailed
design of our proposed approach DyAlert. Section IV shows
the experimental studies we conducted and demonstrates the
effectiveness of DyAlert. In Section V, we present the existing
related approaches. Finally, the conclusion and future exten-
sion are shown in Section VI.

II. BACKGROUND AND MOTIVATION

a) Background: Alert management is a process of con-
figuring alert rules, detecting rule violations, diagnosing alerts,
and mitigating faults. It usually consists of the following three
steps:

07-28 17:07
Alert A

07-28 17:09
Alert B, C

MetricⅠ

Metric Ⅱ

Metric Ⅲ 

           Alert A occurs 

Fig. 1. An example of alert propagation

Alert Rule Management. The process of engineers setting
up alert rules in an alert system (e.g. Prometheus [9]) and
managing them is called alert rule management. An alert
rule is usually configured for the monitoring metrics and
contains a set of conditions that are specific to that monitoring
metrics. For example, an alert rule for success rates is defined
by a condition that the success rate has dropped by more
than 50% in the last 10 minutes. Engineers usually configure
different alert rules for different metrics based on their expert
experience.

Alert Reporting. The process of the alert system detecting
whether a metric has violated the conditions in an alert rule
and raising an alert is called alert reporting. An alert usually
contains a set of fields that describe the alert. As shown in
Table I, the alert contains seven fields, as follows: “Create
Time” is the occurrence time of this alert; “Severity” specifies
the urgency degree of an alert to be handled; “Related Metric”
records the metrics checked by the rule that triggers this
alert; “Business Unit” is the team that develops, implements
and manages the service or component; “Convergence Count”
refers to the number of times other duplicated alerts within a
fixed interval are merged into this alert; “On-call Engineer” is
the person responsible for handling this alert; “Alert descrip-
tion” is a text describing the alert, including the create time,
the corresponding metric, the component, etc.

Alert Handling. The process of the on-call engineers and
developers checking, diagnosing, and mitigating faults based
on the reported alerts is called alert handling. Since there may
be multiple alerts within the same period, on-call engineers
need to first link or aggregate alerts manually based on their
experiences, the related metrics, and alert descriptions to
divide the alerts involved in different faults and assign them to
different teams. The developers in the team then locate the root
causes of faults based on the alert contents and take mitigation
action to eliminate faults. Finally, to guide the future diagnosis
improvement of the same type of faults, the developers usually
write diagnosis reports for the typical faults after mitigation.

b) Motivation: Figure 1 shows an example of alert propa-
gation in the alert management system of Alibaba. It shows the
values of three metrics over time. For the sake of simplicity,
we represent the three metrics with Metric I, II and III. Metric



TABLE II
THE RELATED ALERTS OF THE EXAMPLE IN FIGURE 1

No. Timestamp Alert Description

A 2022/7/28 17:07 [07-28 17:07 Delivery Service] The success count [current value is 7800] in the last minute was down 27%
minute-on-minute. tenant: T application: U

B 2022/7/28 17:09 [07-28 17:09 Order Payment Peak-hour at Noon] The success count [current value is 110] in the last minute
was down 22% minute-on-minute. tenant: T application: V

C 2022/7/28 17:09
[07-28 17:09 Order Home Payment Split Network Traffic] The success count of N was down more than 13% [peak-
hour 1]. The success count [current value is 5600] in the last minute was down 20%>8% minute-on-minute.
tenant: T application: V

I, II and III are three business metrics, which are represented
as the success count of different business functions. At 17:07
and 17:09, the three Alerts A, B and C generated by the alert
rules based on Metric I, II and III occur consecutively because
of a spike in traffic in July 2022. The details of these alerts
such as alert descriptions are shown in Table II. The 30 metric
data points before the alert reporting are also shown in the
graph. According to the definition of alert linking [7], there are
sequentially related links between Alert A and B and between
Alert A and C. There is also a duplicate link between Alert B
and C.

Existing alert linking approaches [7], [8] use semantic
information of the alert description, and represent alerts as
a sequence of alert descriptions [8]. These approaches cannot
well identify linked alerts due to the following two reasons:

• The semantic information of the alert descriptions of the
linked alerts is not always similar. As the examples shown
in Table II, the alert descriptions for Alerts A and B are
relatively similar, but Alert C has only a small number of
words in its alarm description that are similar to Alerts A
and B. Moreover, all the similar words are general words
in the alert descriptions, such as “the success count”, “was
down”, and “minute-on-minute”. Therefore, alert links may
fail to be identified by the common semantic information of
the alert descriptions. However, the fluctuations of Metric II
and III are almost the same. The link between Alert B and
Alert C can therefore be identified by the correlation of the
two metrics.

• An alert may cause multiple alerts to occur simultaneously.
As the example shown in Figure 1, Alert A leads to the
simultaneous occurrence of Alerts B and C. This is be-
cause most online service systems monitor metrics sampled
at intervals of 30 seconds or 1 minute, which makes it
challenging to obtain the accurate order of alerts that occur
during the sampling interval. If the alerts are represented as
a sequence, it will result in the simultaneous occurrence of
Alerts B and C interspersed in an arbitrary manner. How-
ever, we can identify the propagation relationships between
alerts by analyzing the metrics. As shown in Figure 1, the
fluctuation of Metric II and Metric III around 17:09 and
Metric I around 17:07 are very similar, which shows a 2
minutes delay in the propagation of the alerts.

Based on the above analysis, we can find that in order to
accurately identify linked alerts, it is necessary to consider

the semantics of alert, metrics, and alert propagation process.
Therefore, we use a discrete-time dynamic graph to describe
the alert propagation process and combine the metrics and
semantics of alerts.

III. APPROACH

The objective of DyAlert is to automatically and accurately
identify linked alerts in online service systems. It takes alerts
and metrics as input and trains a dynamic graph neural
networks-based model to identify linked alerts.

As shown in Figure 2, the whole process of DyAlert
includes four steps. Alert Embedding generates a semantic
vector representation for each alert by incorporating the alert
description and alert severity. Metric Embedding generates a
vector representation for each metric in the system. Dynamic
Graph Construction constructs a discrete-time dynamic graph
to describe the alert propagation process in the system. Model
Training trains a dynamic graph neural networks-based alert
link prediction model by learning the spatio-temporal infor-
mation for each alert.

For alert link prediction, DyAlert takes metrics and new
alerts as input and predicts whether a new alert is linked
to another alert. Following the same process, it generates
alert vectors and metric vectors. The model then updates the
discrete-time dynamic graph by constructing a new snapshot
and feeds the graph into the trained model to produce the
result.

A. Alert Embedding

We concatenate the alert description and severity into a
sentence and generate a vector representation for it. We only
use these two fields because the alert description already
contains information about the rest of the fields in the alert
content, such as the create time, the related metric, and the
corresponding alert rule, etc.

We first tokenize the alert descriptions. Following previous
works in incident management [5], [6], we split the alert
descriptions into individual words by common separators (e.g.,
“:”, “-”). Moreover, we convert all English words to lowercase.
Then we remove all non-verbal symbols (e.g., IP address, time,
metric value) and stop words (e.g., “the”, “is”) from them,
but retain the thresholds of their alert rules. For example,
the alert description “The success rate [current value is 89%]
in the last two minutes is continuously less than 95%” can
be tokenized into “success”, “rate”, “current”, “value”, “last”,
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Fig. 2. Overview of DyAlert

“two”, “minutes”, “continuously”, “less”, “95%”. Finally, we
insert the severity of the alert (e.g., P3) at the beginning of
the token sequence.

Different from the existing incident management works [7],
[8] that employ static word embeddings generated by ap-
proaches like CBOW [10] and FastText [11], we use a pre-
trained BERT model to generate a vector representation based
on the obtained token sequence. BERT is a transformer-based
deep learning technique for Natural Language Processing
(NLP) pre-training developed by Google [12]. Specifically, we
use the pre-trained BERT model provided by [13]. The model’s
architecture is consistent with the original BERT [12], and its
output is a 768-dimensional vector.

Thus for each alert, we can obtain a 768-dimensional vector
as the semantic representation of the alert’s description and
severity.

B. Metric Embedding

The metrics in the system reflect the current state of the
system in different dimensions. We transform the recent values
of each metric in the system at the create time of an alert into
a vector.

We first perform L2 normalization on the raw values in
the time window [t − wmetric, t] of each metric, where t
is the create time of the alert and wmetric is the length of
the time window. The reason for normalization is that the
value domains of the different metrics in the system are quite
different. For example, the success rate takes values between
0 and 1, and the number of requests takes values across
the entire range of natural numbers. We then transform the
normalized metric values, which are sorted by time, into a
wmetric

d -dimensional vector where d is the sampling interval
of metrics.

C. Dynamic Graph Construction

The propagation of alerts in online service systems is a
complex process. We design Alert-Metric Dynamic Graph
(AMDG) to represent the propagation of alerts in the online
service system. AMDG is a discrete-time dynamic graph
G = {G1, G2, ..., GN} which consists of a series of snapshots

at different time intervals. Each AMDG snapshot is a hetero-
geneous graph Gt, which contains the alerts, metrics and their
relations at a particular time. A relation in a AMDG snapshot
can be one of the following two types.

• Cause: A cause relation from a metric to an alert repre-
sents that the metric is the related metric of the alert.

• Correlation: A correlation relation represents a statistical
correlation between two metrics (e.g., Pearson correla-
tion).

When a new alert occurs, we update the last AMDG
snapshot to get a new AMDG snapshot by the following three
steps.

Step 1: Addition of new alerts. We add this new alert and
all new alerts occurring in the time period after its create time
as new nodes to the AMDG snapshot. This is because multiple
alerts may occur in the online service system in a short time,
and the metrics are usually sampled at intervals of 30 seconds
or 1 minute. Generating multiple snapshots in this situation
would introduce redundancy in the data and affect the validity
of link predictions, therefore we only update the snapshot once
in a short time (1 minute in our work). Then, we add a cause
relation between each new alert and the corresponding related
metric.

Step 2: Removal of expired alerts. We remove alerts
that have expired at this time from the AMDG snapshot.
The propagation of alerts in online systems has delay effects,
therefore they may still have an impact on the system after
they have occurred for some time. We define the alert active
time ta to reflect this phenomenon. If the difference between
the current time and the alert occurrence time is greater than
ta, the alert is regarded as an expired alert. In particular, for
alerts that converge multiple times, we use the time of the last
convergence as the create time of that alert.

Step 3: Updating of relations among metrics. We up-
date the relations among all metrics based on the degree of
linear correlation between them. Specifically, we calculate the
Pearson correlation coefficients based on the raw values in
the time window [t − wmetric, t] for each pair of metrics.
Based on our observation, the historical alerts tend to be linked
when the absolute coefficients of related metrics are relatively
high. Therefore, we define a threshold α to filter out relations
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Fig. 3. An example of Alert-Metric Dynamic Graph (AMDG)

with low correlation coefficients. When the absolute value
of the Pearson correlation coefficient between two metrics is
greater than α, we add the correlation relation between these
two metrics and use the value as the weight of this edge. In
particular, for metrics with a standard deviation of 0 at this
time, we consider that they have no relation with other metrics.
This is because a metric with a standard deviation of 0 means
that its value has not changed during this time, indicating that
it has not been affected by any faults.

For the first snapshot in AMDG, we add all alerts that do
not expire at the create time of the snapshot. And we add the
cause relations among metrics using the same method as in
step 1.

Figure 3 shows an example of AMDG. The orange nodes
and blue nodes in each snapshot represent alerts and metrics
respectively. The directed edge from a blue node to an orange
node represents a cause relation, and the undirected edge from
a blue node to the other blue node represents a correlation
relation. When a new alert u occurs, the t− 1-th snapshot is
updated to get a new snapshot Gt for the current propagation
of alerts. The new alert u and the other new alert v occurring
in the time interval are added to the snapshot Gt. Then, the
related metrics 4 and 2 of alerts u and v are linked with them
respectively by two cause relations. For alert s on the last
snapshot Gt−1, the current time exceeds its active period, thus
it is removed from snapshot Gt. This means it is hardly likely
to affect the system and there is no need to link it with other
alerts. The other alert r on the snapshot Gt−1 has not expired
at the current time, so it still remains on the snapshot Gt.
Besides, there have been some new values of metrics collected
until the create time of alert u. The correlation relations on
snapshot Gt are updated based on these new metric values.
Since the absolute value of Pearson correlation coefficient
between metric 4 and metric 7 is greater than α (e.g., α=0.6
in this example), the edge between these two metrics is added
on the snapshot Gt.

D. Model Training
We model the alert link prediction task as a link prediction

problem in a discrete-time dynamic graph, which aims to train
a model that can predict the existence of an edge between

two alerts in a discrete-time dynamic graph. As shown in
Figure 4, we train a dynamic graph neural networks-based
model to learn the spatio-temporal representation for each alert
and predict whether it is linked with other alerts.

1) Alert Spatial Representation: For each AMDG snapshot,
we use graph neural networks (GNNs) to learn the spatial
representations of the alerts. A spatial representation of an
alert that combines alerts information, metrics information,
and structure information of this AMDG snapshot. The key
characteristic of GNNs is to use pairwise message passing
to iteratively update the nodes’ representations by exchanging
information with their neighboring nodes [14]. Specifically,
we use k-dimensional GNNs (k-GNNs) [15] which take
higher-order graph structures at multiple scales into account
to solve the shortcomings of GNNs as Weisfeiler-Lehman
algorithm [16]. k-GNNs is designed for homogeneous graphs,
however, each AMDG snapshot is a heterogeneous graph that
cannot be well handled by k-GNNs. Therefore we extend k-
GNNs to heterogeneous graphs by using different k-GNNs
layers for each type of relations to extract features.

DyAlert represents each AMDG snapshot as a heteroge-
neous graph Gt = {V a, V m, Xa, Xm, Eca, Eco,W}, where:
V a and V m refer to a set of alert nodes and metric nodes
respectively; Xa ∈ R|V a|×da

and Xm ∈ R|V m|×dm

are nodes
attribute matrix consisting of the raw embeddings of alert
nodes and metric nodes, in which da and dm are the di-
mensions of alert embedding and metric embedding; Eca and
Eco are adjacency matrix of cause relations and correlation
relations; W are the edge weight matrix of correlation rela-
tions. In every iteration, k-GNNs layers pass node attributes
as messages to the target node and update the target node
representations based on different type of adjacency matrixes.
The node representations after the l-th iterations are obtained
by the following equations:

rmp
(l+1) = F1r

m
p

(l) + F2

∑
q∈Eco

p

wq,pr
m
q

(l)

rap′
(l+1) = F3r

a
p′

(l) + F4

∑
q′∈Eca

p′

rmq′
(l)

(1)

where rmp
(l) and rap′

(l) are the representations of the p-th metric
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Fig. 4. The architecture of the dynamic graph neural networks-based model in DyAlert

node and the p′-th alert node after l iterations; when l = 0,
rmp

(0) = Xm
p and rap′

(0) = Xa
p′ respectively, which means the

original attribute of p-th metric node and p′-th alert node; Eco
p

and Eca
p′ are the p-th row of Eco and the p′-th row of Eca,

which means the sets of source nodes that linked with the p-
th metric node and the p′-th alert node respectively according
to adjacency matrix; wq,p refers to the edge weight of the
correlation relation from the q-th metric node to the p-th metric
node in W ; Fi, i ∈ [1, 4] are learnable parameters. Through
the above steps, we get the spatial representation of each alert.
We use the same model for each AMDG snapshot to obtain
the alert spatial representations Rs = {Rs

1, R
s
2, · · · , Rs

N},
where Rs

t = {rtj
(L)|j = 1, 2, · · · , |V a|} and rtj

(L) is the final
representation of j-th alert node in the t-th AMDG snapshot
after L iterations.

2) Alert Spatio-Temporal Representation: For a series
of AMDG snapshots, we use recurrent neural networks
(RNNs) [17] to learn the spatio-temporal representations of
the alerts. The spatial representation of an alert is constantly
changing due to the changes in the snapshots. For each
alert, we treat its spatial representations on different snapshots
before it expires as a sequence, thus allowing RNNs to
learn the representation of the alert over time, which we call
the spatio-temporal representation of the alert. The spatial-
temporal representation of an alert combines information about
the propagation of alerts and its relations to metrics and other
alerts. Specifically, we use Gated Recurrent Unit (GRU) [18]
as the RNNs model, which is a gating mechanism in RNNs.
In contrast to a Long Short-Term Memory (LSTM), it also has
a forget gate but has fewer parameters needed to learn.

For an alert aj , we feed the alert spatial representation se-

quence {ryj
(L)

, ry+1
j

(L)
, · · · , ry

′

j

(L)
}, where aj’s active period

is [y, y′], (1 ≤ y ≤ y′ ≤ N), into GRU to get the alert spatio-
temporal representation at each AMDG snapshot. The spatio-
temporal representation h

(t)
aj of the alert aj after inputting the

alert spatial representation rtj
(L), (y ≤ t ≤ y′), at the t-th

AMDG snapshot, is defined by the following equation:

h(t)
aj

= GRU(rtj
(L)

, h(t−1)
aj

) (2)

where h
(t−1)
aj is the output spatio-temporal representation of

aj after inputting the alert spatial representation rt−1
j

(L)
at the

t− 1-th snapshot.
3) Alert Link Prediction: After obtaining the alert spatio-

temporal representations, we can perform alert link prediction
at each AMDG snapshot. We use classification layers to
predict whether there is a link between a new alert and the
other alert that may be newly added or still existing on the
snapshot.

For the link prediction of the new alert an and the other alert
ao on the t-th snapshot, the square difference is first calculated
with the spatio-temporal representations h(t)

an and h
(t)
ao of them.

With square difference, the result is consistent regardless of the
order of the two alerts. Then, we use a multilayer perceptron
(MLP) with Leaky ReLU activation function to learn the 2-
dimensional latent representation Z from the square difference.
Finally, the positive probability of the latent representation
P̂

(t)
n,o calculated by a softmax function determines whether two

alerts are linked.

Z = MLP [(h(t)
an

− h(t)
ao
)2]

P̂ (t)
n,o =

eZ1∑
k∈{0,1}

eZk

(3)

4) Loss Function: At the training phase, we adopt the
strategy of moving window with a fixed size w and step ∆t
on the AMDG to obtain multiple snapshot sequences. We
treat each snapshot sequence as a training sample and feed
it into the dynamic graph neural networks-based model to
predict the links among alerts. Specifically, for each snapshot
sequence, we only perform link prediction for the last ∆t
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snapshots, which is shown in Figure 5. This is because new
alerts may be linked to existing alerts, thus we need to learn the
spatio-temporal representations of existing alerts. And for each
snapshot that needs to be predicted, we only predict whether
there is a link between each new alert and the other alert. In
this way, we do not have duplicate predictions for the same
alert pair.

Moreover, the linked alerts account for only a small propor-
tion, and most alerts are non-linked. The number of linked alert
pairs is much smaller than the number of non-linked alert pairs
which leads to the class imbalance problem. To alleviate the
impact of class imbalance problems, we adopt focal loss [19]
as the loss function in DyAlert, which is a dynamically scaled
cross-entropy loss function. With the focal loss, we can adjust
the hyperparameter modulating factor γ to focus on learning
hard misclassified samples and the hyperparameter weighting
factor β to reduce the influence from a large number of non-
linked samples. The overall loss of each snapshot sequence is
calculated by using the following Equation:

L =
w∑

i=w−∆t

∑
(n,o)∈Prs(i)

−[(1− β)(1− P̂ (i)
n,o)

γp∗n,o
(i) log(P̂ (i)

n,o)

+ β(P̂ (i)
n,o)

γ(1− p∗n,o
(i)) log(1− P̂ (i)

n,o)]
(4)

where Prs(i) refers to all alert pairs needed to be predicted
in the i-th AMDG snapshot of the snapshot sequence; p∗n,o

(i)

is the ground truth of the pair consisting of alerts an and ao.
Furthermore, we jointly optimize the parameters of het-

erogeneous k-GNNs, GRU, and MLP instead of training
component models separately like [8], thus DyAlert is an end-
to-end approach.

E. Online Alert Link Prediction

DyAlert trains a dynamic graph neural networks-based
model for alert link prediction. When a new alert occurs,
DyAlert conducts alert embedding, metric embedding and
AMDG snapshot construction to obtain a new snapshot. If
the number of new snapshots does not reach ∆t, DyAlert will
continue to wait for the next alert. Otherwise, DyAlert predicts
linked alerts in new snapshots by feeding the snapshots
sequence to the dynamic graph neural networks-based model.

Then, the predicted results are sent to engineers immediately
for facilitating fault localization and mitigation.

IV. EVALUATION

In the evaluation, we conduct a series of experimental
studies with real-world data collected from industry to answer
the following research questions.

• RQ1: How effective is DyAlert on alert link prediction
in online service systems?

• RQ2: How efficient is DyAlert in model training and
online alert link prediction?

• RQ3: How do the choices of different hyperparameters
affect the performance of DyAlert?

A. Experimental Design

1) Dataset: We use as our dataset alert data generated from
July 1st, 2022 to August 1st, 2022 on an online service system
that runs 30,000 different services maintained by 85 business
units of a large company, Alibaba. In total, we collect 6,995
alerts that are related to 1,310 metrics of the system, e.g.,
the average number of orders successfully created per minute,
response time of a request.

Manually Labelling Alert Links. For a supervised ap-
proach, the validity of training data is crucial to its effec-
tiveness. Despite our data being collected from the real-world
system, we choose not to use the link labels given by on-
call engineers. This is because these links are labeled when
handling system emergencies and often are not complete and
accurate. To achieve the data with ground truth, we ask two
interns in Alibaba to manually analyze if two alerts are inter-
related. Given alert a, we only consider alerts that are triggered
in the active time of alert a and check if any of them is
inter-related to a. If they are inter-related, we make a label
between them. Based on our analysis of the data in Alibaba,
the delay effect of an alert normally does not last for 10
minutes. Thus, we set the active time of an alert is 10 minutes.
With this setting, for the 6,995 alerts, 10,564 pairs of alerts
need to be checked if they are inter-related. For labelling, the
two interns analyze each alert pair independently and then
perform a cross check on their results. For inconsistent results,
a third expert with extensive experience is assigned to give an
additional assessment to resolve the conflicts by a majority-
win strategy. Following this process, they eventually identify
3,255 alert links out of the 10,564 pairs, which are used in
the experiments.

Training Set & Testing Set. To evaluate DyAlert, we divide
the manually labelled dataset into two distinct subsets: a train-
ing set and a testing set. To ensure the model’s generalizability
and prevent overfitting, we partitioned the dataset based on the
occurrence time of alerts. Specifically, 5, 836 alerts that occur
from July 1st, 2022 to July 26th, 2022 are used as the training
set and 1, 159 alerts that occur from July 27th, 2022 to August
1st, 2022 are used as the testing set.



2) Measures: Since alert link prediction in our work is a
binary classification task, we adopt widely-used classification
measures for evaluation.

• Precision = TP
TP+FP refers to the percentage of relations

whose labels are linked in linked relations classified by
our model in DyAlert.

• Recall = TP
TP+FN is the percentage of linked relations

classified by our model in DyAlert out of relations whose
labels are linked.

• F1-score = 2·precision·recall
precision+recall is the harmonic mean of

precision and recall.

On the other hand, alert link prediction aims to link alerts
with propagation relations caused by a fault so as to reduce
the number of alerts that need to be investigated for diagnosing
a fault. Therefore, we use a clustering comparison measure to
evaluate the effectiveness of our approach.

• Adjusted Mutual Information (AMI) [20] is a widely-
used clustering comparison measure based on Shannon
information theory to account for chance, represented as
AMI(U,V) = I(U,V)−E{I(U,V)}

1
2 (H(U)+H(V))−E{I(U,V)} , where U is

the set of ground truth partition, V is the set of prediction
partition, H(·) is the entropy, E(·) is the expected value,
and I(U,V) is the mutual information between U and
V. It takes a value of 1 when the compared partitions
are identical, and 0 when the mutual information between
the compared partitions equals its expected value. Since
many alerts may have no links with others, the reference
clustering based on alert links is unbalanced and there
exist small clusters. AMI is more suitable for the task
of alert link prediction than other clustering comparison
measures [21].

3) Baselines: The following approaches are selected as
baselines to compare with DyAlert.

• FP-Growth [22] is a prefix-tree-based frequent pattern
mining algorithm, which can find a series of frequent
item sets in large datasets. It is common in industry to
mine the frequent pairs in historical manual links between
alert templates parsed by Drain [23] with FP-Growth.

• LiDAR [7] is a supervised framework for incident link
identification. It trains a deep learning model to learn
similar semantic representations for the textual descrip-
tions of historically manual linked incidents and adopts
node2vec [24] to encode the structure information on
the component dependency network which is constructed
based on the involved components of the historically
linked incidents. Based on these representations, it calcu-
lates the semantic and structural similarity by the cosine
distance and then identify links.

• OAS [8] is a framework to summarize alerts with the
links among them. It trains three models respectively
to extract semantics from contextual information and
the common behavior patterns from the alert description
occurrence series and then combine the two pieces of
information to classify the link between alerts. All of

these models are trained in a supervised manner with
historically linked alerts labeled by engineers.

• DyAlert-T is a variant of DyAlert that does not consider
metrics that are associate with alerts, i.e., only taking
semantics of alert content to train a model and predicate
alert link.

• DyAlert-M is a variant of DyAlert that does not consider
semantics of alert contents and remains the same as
DyAlert for other parts.

• DyAlert-G is a variant of DyAlert that takes semantics
of alert contents and fluctuations of metrics for model
training, but does not consider sequential information
over alert propagation.

4) Implementations and Settings: We implement DyAlert
using Python 3.7.15, PyTorch 1.12.1, and PyTorch Geometric
1.7.2. We have open-sourced our code on GitHub [25].

All the experiments are conducted on a cloud elastic com-
pute service with Intel Xeon Platinum 8163 CPU, 368 GB
RAM, and Tesla V100 with 32GB GPU memory. The hyper-
parameter settings of DyAlert are as follows: the embedding
size of semantic representation is set to 768, the embedding
size of metric representation wmetric is set to 30, the number
of heterogeneous k-GNNs hidden layers is set to 2, the hidden
sizes of each layer are set to 128 and 256, the hidden size of
the GRU layer is set to 256, the number of MLP layers is set
to 3, the hidden sizes of each layer are set to 128, 64, and 2
respectively, the threshold α for filtering correlation relations
of low linear correlation is set to 0.6, the β and γ in Equation 4
are set to 0.5 and 1.5 respectively, and the collection window
length of metrics wmetric is set to 30. At the training stage,
we adopt Adam [26] to optimize the parameters of the neural
networks-based model of DyAlert with an initial learning rate
of 0.0001 and train it iteratively for 50 epochs.

B. Effectiveness of DyAlert (RQ1)

Table III shows the results of DyAlert, variants of DyAlert
and baseline approaches under comparison described in Sec-
tion IV-A, where the first column indicates approaches in the
evaluation, the following columns present precision, recall, F1-
score, and AMI of experiment results. As shown in the table,
DyAlert achieves the best performance in terms of precision,
F1-score and AMI except for recall. Specifically, the precision,
recall, F1-score and AMI of DyAlert are 0.761, 0.758, 0.759
and 0.794 respectively.

Comparison with the variants of DyAlert. Compared to
DyAlert-T and DyAlert-M, DyAlert is better than them by
10.1% and 11.1% in terms of F1-score because it considers
both semantics of alert contents and fluctuations of related
metrics and constructs heterogeneous graphs with them, which
can compensate each other to perform better. Moreover, since
DyAlert takes the delay effects of an alert propagation process
into account and uses GRU to learn the representation of each
alert over time, DyAlert outperforms DyAlert-G by 5.6% in
terms of F1-score.

Comparison with baseline approaches. DyAlert is ef-
fective in alert link prediction and outperforms existing ap-



TABLE III
EFFECTIVENESS OF DIFFERENT APPROACHES

Approach Precision Recall F1-Score AMI

FP-Growth 0.694 0.541 0.608 0.738
LiDAR 0.520 0.776 0.622 0.487
OAS 0.449 0.819 0.580 0.617

DyAlert-T 0.659 0.724 0.690 0.768
DyAlert-M 0.668 0.699 0.683 0.715
DyAlert-G 0.741 0.698 0.719 0.705
DyAlert 0.761 0.758 0.759 0.794

TABLE IV
TRAINING AND TESTING TIME OF DIFFERENT APPROACHES

Approach Training Time Testing Time

FP-Growth 2.43s 0.49s
LiDAR 539.07s 2.12s
OAS 22.9s 2.43s

DyAlert 858s 2.74s

proaches by 41.8%, 10.1%, 25.9% and 33.1% on average in
terms of precision, recall, F1-score and AMI.

This is primarily due to the following two factors considered
in DyAlert. First, except for semantic information of alert
contents, recent values of metrics whose anomalies cause alerts
are considered in DyAlert. Therefore, DyAlert can identify
the underlying links between alerts that may not have similar
content but exhibit similar recent fluctuations in their related
metrics. Second, DyAlert models alerts’ propagation processes
with AMDG and learns representations based on AMDG to
link alerts. This capability allows DyAlert to identify more
challenging alert links with a delay of the propagation between
them and achieve higher performance. In contrast, the baseline
approaches do not consider such information and may miss the
cases above.

Besides, we notice that the results of baseline approaches
LiDAR and OAS are different from those reported in their
papers. This might be because we use a different dataset.
Our dataset is collected from an online service system with
extremely complex interactions used in a large company.
There are a variety of complicated alert linking scenarios
that are not included in their datasets. For example, diverse
alert propagation processes at different moments may lead to
different link predictions between alerts.

In conclusion, all the components of DyAlert make essential
contributions to its effectiveness. Meanwhile, results from real-
world data in Alibaba show that DyAlert is effective on alert
link prediction, outperforming three existing approaches (i.e.,
FP-Growth, LiDAR, and OAS).

C. Efficiency of DyAlert (RQ2)

Table IV shows the average training and testing time of
DyAlert and the existing approaches. As shown in the table,
DyAlert (i.e., 858s) needs more time than FP-Growth (i.e.,
2.43s), LiDAR (i.e., 539.07s) and OAS (i.e., 22.9s) during

(a) the threshold α for filtering correlation relations of low linear correlation

(b) the collection window length of metrics wmetric

Fig. 6. Impact of different hyperparameters

the training phase. This is expected since DyAlert uses a
more complex network with more parameters for learning alert
propagation based on alert contents and metrics. Considering
DyAlert trains the model offline, this time cost is acceptable in
practice. In terms of testing time, DyAlert takes 2.74s to pre-
dict links between alerts of the testing set. Although DyAlert
still has the longest prediction time, which is quite small for
performing alert linking for 1,159 alerts. For each AMDG
snapshot, DyAlert takes 0.0047s on average to complete alert
linking, which is sufficient to assist engineers in the fault
diagnosis.

D. Impact of Hyperparameters (RQ3)

DyAlert requires the configuration of two hyperparameters
α and wmetric. Parameter α is used for filtering the cor-
relation relations among metrics based on Pearson correla-
tion coefficients. Parameter wmetric indicates the collection
window length of metrics, determining the number of metric
values used for calculating Pearson correlation coefficients.
We evaluate the impact of these two hyperparameters on the
performance of DyAlert.

Figure 6 (a) shows the impact of α on three measures (i.e.,
precision, recall, and F1-score) of DyAlert. Smaller α usually
leads to lower F1-score and precision. When α = 0, which
means there is no need to filter metric edges, each metric node
has an average of 649 neighbors. It is hard for the model in
DyAlert to extract valid information and predict alert links
based on such complex metric dependencies. On the other
hand, bigger α may also cause lower F1-score and recall.



When α = 0.9, all edges whose absolute Pearson correlation
coefficients are lower than 0.9 are filtered and each metric node
only has an average of 3 neighbors. It makes the propagation
processes of alerts likely incomplete. According to the results,
α = 0.6 achieves the best performance in terms of F1-score.

Figure 6 (b) shows how the length of metric collection
window wmetric impacts the performance of DyAlert. As
shown in the figure, both F1-score and precision decrease
when wmetric gets smaller. It is because smaller wmetric

results in fewer metric values are used for calculating Pearson
correlation coefficient, which is more likely to get an inaccu-
rate coefficient. Besides, bigger wmetric also leads to lower
F1-score and precision. When wmetric is big, the proportion
of anomalous fluctuations in all metric values is small, and
most metric values are collected before faults occur. This
leads to the false alert link prediction for faults that last for
a relatively short time. According to the results, we choose
wmetric = 30 for a stable performance. It is worth noting
that the hyperparameter selection is highly dependent on the
specificity of the data used. The best hyperparameters vary
with the data.

E. Threats to Validity and Limitation

1) Threats to Validity: The threats to internal validity
mainly lie in the implementation and configurations of baseline
approaches and noisy labels. For baseline approaches, we
directly use source codes provided by OAS and FP-Growth.
But for LiDAR, we implement it by ourselves as it has no
publicly available implementations. In order to reduce this
threat, we follow the paper of LiDAR and carefully assemble
components in the same way. Meanwhile, we choose the best
configurations of these approaches for alert link prediction on
our dataset. As for noisy labels, since the historical alert links
are manually labeled by multiple on-call engineers, and they
can only make judgements within a limited time to prevent
faults from propagating further, it is inevitable that there are
some noisy labels. To alleviate this threat, we reassess labels
carefully with the assistance of two interns and a third expert
as Section IV-A mentioned. Therefore, we are confident that
the amount of noise is small (if it exists).

The threat to external validity mainly lies in the gener-
alizability of our approach. In our experimental studies, we
only collect alerts for 32 days from Alibaba, which may
affect the diversity of our dataset and the generalizability of
our approach. However, Alibaba is a world-leading Internet
Service Provider (ISP) with around 1 billion users across the
world and the alert data is collected from a large online service
system that runs 30,000 different services maintained by 85
business units in Alibaba. Therefore, the system is a typical,
representative online service system that generates sufficient
complex data. The results of DyAlert on real-world data of
Alibaba demonstrate that our approach is generalizable enough
to other companies and bring them benefits.

2) Limitation: Although DyAlert achieves superior perfor-
mance, there are some limitations in the current implemen-
tation. First, only the metrics related to historical alerts are

considered for the construction of each AMDG snapshot in
DyAlert, thus it can not handle new metrics that have not
appeared in the historical data during the online prediction
phase. Second, the number of monitoring metrics is huge in a
large online service system. Constructing AMDG with all the
related metrics in historical alerts like the current implemen-
tation of DyAlert may lead to high complexity of calculating
the correlation coefficient between every two metrics and
obtaining spatial representations from complex correlation
relations among metrics. Third, DyAlert is implemented to
only support offline training of the model, so it is not capable
to update in a real-time manner.

V. RELATED WORK

In recent years, there have been a number of works de-
voted to alert management in both academia and industry. To
improve the efficiency of engineers in handling alerts, they
focus on optimizing the diagnosis and mitigation procedures
from different aspects (e.g., incident prediction, incident triage
and alert prioritization)

Some of them aim to tackle the problem of incident
prediction [27], [28] for predicting the occurrence of an
incident based on alerts’ features to reserve time for engineers’
proactive actions of mitigation. Chen et al. [27] first propose
AirAlert, which can predict general incidents based on the
number of different kinds of alerts. Zhao et al. [28] propose
eWarn, which conducts careful feature engineering and multi-
instance learning to reduce the influence of noisy alerts that
can not be handled by AirAlert and generate an interpretable
report for a prediction result.

Some works focus on incident triage [29], [30], which
aims to assign incidents to the team responsible for them.
Chen et al. [29] perform an empirical study of incident triage
on multiple large-scale online service systems and discuss
possible ways to improve the accuracy of incident triage.
Regarding incident triage as a continuous process, Chen et
al. [30] propose DeepCT, a deep learning-based approach to
incrementally learn knowledge from incident discussions and
update incident triage results.

Some other works are devoted to alert prioritization [31],
[32], whose objective is to recommend severe alerts with
higher priority levels to engineers for priority handling. Jiang
et al. [31] propose a peer review mechanism to rank the
importance of alerts with alert rules. Since the rule-based
approach results in missing severe alerts or wasting time on
non-severe alerts, Zhao et al. [32] propose AlertRank, an
automatic and adaptive approach that first extracts a set of
alert textual and temporal features, and then adopts a ranking
algorithm to identify severe alerts.

Different from them, our work is devoted to solving hard
fault analysis caused by alert storm. There are some works
using alert aggregation [4]–[6] for handling alert storm. Lin
et al. [5] apply graph-theoretic approaches to cluster alerts
based on their semi-structured contents. Zhao et al. [6] detect
alert storms adaptively and cluster alerts with both textual and
topological structure similarity. Chen et al. [4] extend their



works for handling multiple alert storm cases within the same
period. They use metrics with similar abnormal behaviors to
mine the anomalies that do not trigger alerts and apply com-
munity detection to find the scopes of different incidents at the
same period. There are also some works using alert linking [7],
[8] to handle alert storm. Chen et al. [7] also use the semantic
and the dependency structure information like existing works
for alert aggregation, but construct the dependency network
with the involved components of historically linked alerts
and train its model in a supervised manner. Considering the
system topology is updated continuously, Chen et al. [8]
link alerts with the common behavior pattern from the alert
description occurrence series except for semantic information.
However, all of these existing approaches do not consider the
complex process of alert propagation, and they just extract
static information to represent alerts.

VI. CONCLUSION

In this paper, we propose DyAlert, a dynamic graph neural
networks-based approach for alert link prediction. It uses a
discrete-time dynamic graph constructed by alert semantic in-
formation and metric information to describe alert propagation.
Based on the dynamic graph, we design a neural networks-
based model with heterogeneous k-GNNs and GRU which can
learn a spatio-temporal representation for each alert and pre-
dict whether the alerts are linked to each other. Experimental
studies on the real-world data from Alibaba demonstrate the
effectiveness and efficiency of DyAlert. It outperforms three
existing approaches (i.e., FP-Growth, LiDAR and OAS).

In the future, we will extend DyAlert to improve the imple-
mentation to resolve the limitations mentioned in Section IV-E,
recommend potential root causes of faults to further assist
engineers in fault mitigation, and on the other hand evaluate
DyAlert on various online service systems.
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